【題目】如圖,將沿著過中點(diǎn)的直線折疊,使點(diǎn)落在邊上的,稱為第次操作,折痕的距離記為;還原紙片后,再將沿著過中點(diǎn)的直線折疊,使點(diǎn)落在邊上的處,稱為第次操作,折痕的距離記為;按上述方法不斷操作下去…,經(jīng)過第次操作后得到的折痕,到的距離記為,若,則的值為( )

A.B.C.D.

【答案】B

【解析】

根據(jù)中點(diǎn)的性質(zhì)及折疊的性質(zhì)可得DA=DA'=DB,從而可得∠ADA'=2B,結(jié)合折疊的性質(zhì)可得∠ADA'=2ADE,可得∠ADE=B,繼而判斷DEBC,得出DE是△ABC的中位線,證得A A1BC,得到AA1=2,求出h1=2-1=1,同理,h2=2-h3=2-×=2-,經(jīng)過第n次操作后得到的折痕Dn-1En-1BC的距離hn=2-

解:由折疊的性質(zhì)可得:AA1DE,DA=DA1
又∵DAB中點(diǎn),
DA=DB,
DB=DA1
∴∠BA1D=B,
∴∠ADA1=2B,
又∵∠ADA1=2ADE,
∴∠ADE=B
DEBC,
AA1BC
AA1=2h1=2
h1=2-1=1,
同理,h2=2-,h3=2-×=2-

∴經(jīng)過第n次操作后得到的折痕Dn-1En-1BC的距離hn=2-
h2019=
故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料,解決問題:

材料1:在研究數(shù)的整除時(shí)發(fā)現(xiàn):能被5、25、125、625整除的數(shù)的特征是:分別看這個(gè)數(shù)的末一位、末兩位、末三位、末四位即可,推廣成一條結(jié)論;末位能被整除的數(shù),本身必能被整除,反過來,末位不能被整除的數(shù),本身也不可能被整除,例如判斷992250能否被25、625整除時(shí),可按下列步驟計(jì)算:

,為整數(shù),能被25整除

不為整數(shù),不能被625整除

材料2:用奇偶位差法判斷一個(gè)數(shù)能否被11這個(gè)數(shù)整除時(shí),可把這個(gè)數(shù)的奇位上的數(shù)字與偶位上的數(shù)字分別加起來,再求它們的差,看差能否被11整除,若差能被11整除,則原數(shù)能被11整除,反之則不能.

(1)若這個(gè)三位數(shù)能被11整除,則  ;在該三位數(shù)末尾加上和為8的兩個(gè)數(shù)字,讓其成為一個(gè)五位數(shù),該五位數(shù)仍能被11整除,求這個(gè)五位數(shù)

(2)若一個(gè)六位數(shù)p的最高位數(shù)字為5,千位數(shù)字是個(gè)位數(shù)字的2倍,且這個(gè)數(shù)既能被125整除,又能被11整除,求這個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB為直角,∠AOC為銳角,且OM平分∠BOC,ON平分∠AOC.

(1)如果∠AOC=50°,求∠MON的度數(shù);

(2)如果∠AOC為任意一個(gè)銳角,你能求出∠MON的度數(shù)嗎?若能,請(qǐng)求出來,若不能,說明為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每天早晨王老師7點(diǎn)準(zhǔn)時(shí)騎自行車去學(xué)校上班,今天早晨由于走的匆忙,忘帶一樣重要東西。當(dāng)他騎車至距學(xué)校6千米處時(shí),原地返回,加速回到家,取完東西又以最初出發(fā)時(shí)的速度騎車去學(xué)校。如圖是王老師今早出行的過程中他距學(xué)校的距離y(km)與他離家所用時(shí)間x(min)之間的函數(shù)圖像.

根據(jù)圖像解答下列問題:

(1)求直線AB的解析式.

(2)如果學(xué)校8:30準(zhǔn)時(shí)上課,請(qǐng)問王老師能否按時(shí)到校上課?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB為⊙O的直徑,⊙OAC的中點(diǎn)D,DEBC于點(diǎn)E.

(1)求證:DE為⊙O的切線;

(2)DE=2,tanC=,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為線段上一動(dòng)點(diǎn)(不與點(diǎn)、重合),在同側(cè)分別作等邊和等邊交于點(diǎn),交于點(diǎn)交于點(diǎn),連接,以下五個(gè)結(jié)論:①;②;③;④;⑤平分.一定成立的結(jié)論有______________;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點(diǎn)為二次函數(shù)圖象的頂點(diǎn),直線分別交軸正半軸,軸于點(diǎn).

(1)判斷頂點(diǎn)是否在直線上,并說明理由.

(2)如圖1,若二次函數(shù)圖象也經(jīng)過點(diǎn),,且,根據(jù)圖象,寫出的取值范圍.

(3)如圖2,點(diǎn)坐標(biāo)為,點(diǎn)內(nèi),若點(diǎn),都在二次函數(shù)圖象上,試比較的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,是斜邊上兩點(diǎn),且,將順時(shí)針旋轉(zhuǎn)后,得到,連接,則下列結(jié)論不正確的是(

A.B.為等腰直角三角形

C.平分D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(9分)如圖,△ABC為等腰三角形,ACBC,以邊BC為直徑的半圓與邊AB,AC分別交于D,E兩點(diǎn),過點(diǎn)DDFAC,垂足為點(diǎn)F

(1)判斷DF與⊙O的位置關(guān)系,并證明你的結(jié)論;

(2)若BC=9,EF=1,求DF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案