【題目】如圖所示,在平面直角坐標(biāo)系中,半徑均為1個單位長度的半圓O1,O2O3,… 組成一條平滑的曲線,點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒個單位長度,則第2017秒時,點P的坐標(biāo)是( )

A. (2016,0) B. (2017,-1) C. (2015,-1) D. (2017,1)

【答案】D

【解析】由題意得半圓周的周長是π,四分之一圓周是二分之π,因為半徑為1,根據(jù)P點的速度得:1秒時P點坐標(biāo)是(1,1);2秒時P點坐標(biāo)是(2,0);3秒時P點坐標(biāo)是(3,-1);4秒時P點坐標(biāo)是(4,0);5秒時P點坐標(biāo)是(5,1)…,由此可知縱坐標(biāo)四個一循環(huán),橫坐標(biāo)與秒數(shù)一樣,2017÷4=504……1,∴2017秒時,點P的坐標(biāo)P(2017,1),故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點D為邊BC的中點,點EABC內(nèi),AE平分∠BAC,CEAEFAB上,且BF=DE

1)求證:四邊形BDEF是平行四邊形

2)線段AB,BF,AC之間具有怎樣的數(shù)量關(guān)系?證明你所得到的結(jié)論

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+ca≠0)的圖象與x軸交于點A10),與y軸的交點B在(02)和(0,1)之間(不包括這兩點),對稱軸為直線x=1.下列結(jié)論:①abc0 4a+2b+c0 4acb28a abc.其中含所有正確結(jié)論的選項是( 。

A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】嘉淇準(zhǔn)備完成題目:化簡:,發(fā)現(xiàn)系數(shù)印刷不清楚.

(1)他把猜成3,請你化簡:(3x2+6x+8)–(6x+5x2+2);

(2)他媽媽說:你猜錯了,我看到該題標(biāo)準(zhǔn)答案的結(jié)果是常數(shù).通過計算說明原題中是幾?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A,B兩點在數(shù)軸上,點A在原點O的左邊,表示的數(shù)為﹣10,點B在原點的右邊,且BO3AO.點M以每秒3個單位長度的速度從點A出發(fā)向右運動.點N以每秒2個單位長度的速度從點O出發(fā)向右運動(點M,點N同時出發(fā)).

1)數(shù)軸上點B對應(yīng)的數(shù)是   ,點B到點A的距離是   ;

2)經(jīng)過幾秒,原點O是線段MN的中點?

3)經(jīng)過幾秒,點M,N分別到點B的距離相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)著說點理:補全證明過程:

如圖, 于點,若 ,求 的度數(shù)。

解:過點 。

,

________________)①

________。②(兩直線平行,內(nèi)錯角相等)

,

。(________________)③

________________。④(等量代換)

,

。(________________)⑤

,

________________ 。⑥

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程

1;

2(用配方法);

3(用公式法);

4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為培養(yǎng)學(xué)生養(yǎng)成良好的愛讀書,讀好書,好讀書的習(xí)慣,我市某中學(xué)舉辦了漢字聽寫大賽,準(zhǔn)備為獲獎同學(xué)頒獎.在購買獎品時發(fā)現(xiàn),一個書包和一本詞典會花去48元,用124元恰好可以購買3個書包和2本詞典.

1)每個書包和每本詞典的價格各是多少元?

2)學(xué)校計劃總費用不超過900,為獲勝的40名同學(xué)頒發(fā)獎品(每人一個書包或一本詞典),求最多可以購買多少個書包?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DBC邊上的一點,EAD的中點,過A點作AF//BC,交CE的延長線于點F,且AF=BD,連接BF

1BDCD有什么數(shù)量關(guān)系,并說明理由.

2)連接FD,與AB相交于點O,若BO=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案