【題目】如圖,直線l1:y=﹣x+3與x軸相交于點(diǎn)A,直線l2:y=kx+b經(jīng)過點(diǎn)(3,﹣1),與x軸交于點(diǎn)B(6,0),與y軸交于點(diǎn)C,與直線l1相交于點(diǎn)D.
(1)求直線l2的函數(shù)關(guān)系式;
(2)點(diǎn)P是l2上的一點(diǎn),若△ABP的面積等于△ABD的面積的2倍,求點(diǎn)P的坐標(biāo);
(3)設(shè)點(diǎn)Q的坐標(biāo)為(m,3),是否存在m的值使得QA+QB最小?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
【答案】(1)直線l2的函數(shù)關(guān)系式為:y=x﹣2;
(2)點(diǎn)P的坐標(biāo)為(, )或(, );
(3)存在m的值使得QA+QB最小,此時點(diǎn)Q的坐標(biāo)為(,3).
【解析】試題分析: (1)把點(diǎn)(3,﹣1),點(diǎn)B(6,0)代入直線l2,求出k、b的值即可;
(2)設(shè)點(diǎn)P的坐標(biāo)為(t, t﹣2),求出D點(diǎn)坐標(biāo),再由S△ABP=2S△ABD求出t的值即可;
(3)作直線y=3,作點(diǎn)A關(guān)于直線y=3的對稱點(diǎn)A′,連結(jié)A′B,利用待定系數(shù)法求出其解析式,根據(jù)點(diǎn)Q(m,3)在直線A′B上求出m的值,進(jìn)而可得出結(jié)論.
試題解析:
(1)由題知:
解得: ,
故直線l2的函數(shù)關(guān)系式為:y=x﹣2;
(2)由題及(1)可設(shè)點(diǎn)P的坐標(biāo)為(t, t﹣2).
解方程組,得,
∴點(diǎn)D的坐標(biāo)為(,﹣).
∵S△ABP=2S△ABD,
∴AB|t﹣2|=2×AB|﹣|,即|t﹣2|=,解得:t=或t=,
∴點(diǎn)P的坐標(biāo)為(, )或(, );
(3)作直線y=3(如圖),再作點(diǎn)A關(guān)于直線y=3的對稱點(diǎn)A′,連結(jié)A′B.
由幾何知識可知:A′B與直線y=3的交點(diǎn)即為QA+QB最小時的點(diǎn)Q.
∵點(diǎn)A(3,0),
∴A′(3,6)
∵點(diǎn)B(6,0),
∴直線A′B的函數(shù)表達(dá)式為y=﹣2x+12.
∵點(diǎn)Q(m,3)在直線A′B上,
∴3=﹣2m+12
解得:m=,
故存在m的值使得QA+QB最小,此時點(diǎn)Q的坐標(biāo)為(,3).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y1=ax+b(a≠0)的圖象與反比例函數(shù)y2=(k≠0)的圖象交于A、B兩點(diǎn),與x軸交于點(diǎn)C,過點(diǎn)A作AH⊥x軸于點(diǎn)H,點(diǎn)O是線段CH的中點(diǎn),AC=4,cos∠ACH=.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)在x軸上是否存在點(diǎn)P,使三角形PAC是等腰三角形?若存在,請求出P點(diǎn)坐標(biāo);不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算或化簡:
(1)3-(-8)+(-5)+6
(2).
(3)-23×(-8)-(-)3×(-16)+×(-3)2
(4)先化簡,再求值:
,其中,.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)下列關(guān)于反比例函數(shù)y=的性質(zhì),描述正確的有_____。(填所有描述正確的選項(xiàng))
A. y隨x的增大而減小
B. 圖像關(guān)于原點(diǎn)中心對稱
C. 圖像關(guān)于直線y=x成軸對稱
D. 把雙曲線y=繞原點(diǎn)逆時針旋轉(zhuǎn)90°可以得到雙曲線y=-
(2)如圖,直線AB、CD經(jīng)過原點(diǎn)且與雙曲線y=分別交于點(diǎn)A、B、C、D,點(diǎn)A、C的橫坐標(biāo)分別為m,n(m>n>0),連接AC、CB、BD、DA。
①判斷四邊形ACBD的形狀,并說明理由;
②當(dāng)m、n滿足怎樣的數(shù)量關(guān)系時,四邊形ACBD是矩形?請直接寫出結(jié)論;
③若點(diǎn)A的橫坐標(biāo)m=3,四邊形ACBD的面積為S,求S與n之間的函數(shù)表達(dá)式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在Rt△ABC中,∠C=90°,AC=9,BC=12,點(diǎn) D、E 分別在邊AC、BC上,且CD:CE=3︰4.將△CDE繞點(diǎn)D順時針旋轉(zhuǎn),當(dāng)點(diǎn)C落在線段DE上的點(diǎn) F處時,BF恰好是∠ABC的平分線,此時線段CD的長是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩個工程隊(duì)承包了地鐵某標(biāo)段全長3900米的施工任務(wù),分別從南,北兩個方向同時向前掘進(jìn)。已知甲工程隊(duì)比乙工程隊(duì)平均每天多掘進(jìn)0.4米經(jīng)過13天的施工兩個工程隊(duì)共掘進(jìn)了156米.
(1)求甲,乙兩個工程隊(duì)平均每天各掘進(jìn)多少米?
(2)為加快工程進(jìn)度兩工程隊(duì)都改進(jìn)了施工技術(shù),在剩余的工程中,甲工程隊(duì)平均每天能比原來多掘進(jìn)0.4米,乙工程隊(duì)平均每天能比原來多掘進(jìn)0.6米,按此施工進(jìn)度能夠比原來少用多少天完成任務(wù)呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個三角形數(shù)陣,仔細(xì)觀察排列規(guī)律:
第1行 1
第2行 -
第3行 - -
第4行 - -
.....
按照這個規(guī)律繼續(xù)排列下去,第21行第2個數(shù)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】河南省旅游資源豐富,2013~2017年旅游收入不斷增長,同比增速分別為:15.3%,12.7%,15.3%,14.5%,17.1%.關(guān)于這組數(shù)據(jù),下列說法正確的是( 。
A. 中位數(shù)是12.7% B. 眾數(shù)是15.3%
C. 平均數(shù)是15.98% D. 方差是0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)是正方形邊上任意一點(diǎn),以為邊作正方形,連接,點(diǎn)是線段中點(diǎn),射線與交于點(diǎn),連接.
(1)請直接寫出和的數(shù)量關(guān)系和位置關(guān)系.
(2)把圖1中的正方形繞點(diǎn)順時針旋轉(zhuǎn),此時點(diǎn)恰好落在線段上,如圖2,其他條件不變,(1)中的結(jié)論是否成立,請說明理由.
(3)把圖1中的正方形繞點(diǎn)順時針旋轉(zhuǎn),此時點(diǎn)、恰好分別落在線段、 上,連接,如圖3,其他條件不變,若,,直接寫出的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com