【題目】如圖,在中,,為的中點,,則__________.
【答案】80°
【解析】
過F作FG∥AB∥CD,交BC于G,由,為的中點,則有BG=AB=FG=AF,然后得到BG=GE=FG=BC,根據(jù)等邊對等角,求出∠AEG的度數(shù),即可求出∠B的度數(shù).
解:過F作FG∥AB∥CD,交BC于G;
則四邊形ABGF是平行四邊形,所以AF=BG,即G是BC的中點;
∵BC=2AB,F為AD的中點,
∴BG=AB=FG=AF,
連接EG,在Rt△BEC中,EG是斜邊上的中線,
則BG=GE=FG=BC;
∵AE∥FG,
∴∠EFG=∠AEF=∠FEG=50°,
∴∠AEG=∠AEF+∠FEG=100°,
∴∠B=∠BEG=180°100°=80°.
故答案為:80°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點A、B的坐標(biāo)分別為(0,2)、(1,0),頂點C在函數(shù)y=x2+bx-1的圖象上,將正方形ABCD沿x軸正方向平移后得到正方形A′B′C′D′,點D的對應(yīng)點D′落在拋物線上,則點D與其對應(yīng)點D′之間的距離為 ______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)的圖象與一次函數(shù)y2=ax+b 的圖象交于點 A(1,4)和點 B(m,-2),直線 AB 交 x 軸于點 C.
(1)求這兩個函數(shù)的關(guān)系式;
(2)求△OAB 的面積;
(3)結(jié)合圖象直接寫出 > 時,x 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,M為BC上的點,E是AD的延長線的點,且AE=AM,過E作EF⊥AM垂足為F,EF交DC于點N.
(1)求證:AF=BM;
(2)若AB=12,AF=5,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是等腰△ABC底邊BC上的高.點O是AC中點,延長DO到E,使OE=OD,連接AE,CE.
(1)求證:四邊形ADCE的是矩形;
(2)若AB=17,BC=16,求四邊形ADCE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某賓館有50個房間供游客住宿,當(dāng)每個房間的房價為每天180元時,房間會全部住滿.當(dāng)每個房間 每天的房價每增加10元時,就會有一個房間空閑.賓館需對游客居住的每個房間每天支出20元的各種費用.根據(jù)規(guī)定,每個房間每天的房價不得高于340元.設(shè)每個房間的房價增加x元(x為10的正整數(shù)倍).
(1)設(shè)一天訂住的房間數(shù)為y,直接寫出y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)設(shè)賓館一天的利潤為w元,求w與x的函數(shù)關(guān)系式;
(3)一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用對稱性可設(shè)計出美麗的圖案.在邊長為1的方格紙中,有如圖所示的四邊形(頂點都在格點上).
(1)先作出該四邊形關(guān)于直線成軸對稱的圖形,再作出你所作的圖形連同原四邊形繞0點按順時針方向旋轉(zhuǎn)90o后的圖形;
(2)完成上述設(shè)計后,整個圖案的面積等于_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2-12ax+36a-5的圖象在4<x<5這一段位于x軸下方,在8<x<9這一段位于x軸上方,則a的值為___________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com