【題目】如圖,在⊙O中,半徑OA=6 cm,C是OB的中點,∠AOB=120°,求陰影部分的面積.
【答案】陰影部分的面積為cm2.
【解析】
過點C作CD⊥AO,交AO的延長線于點D,在Rt△OCD中,求得CD 的長,即可求得△AOC的面積,再求得扇形AOB的面積,利用S陰影=S扇形OAB-S△AOC即可求得陰影部分的面積.
過點C作CD⊥AO,交AO的延長線于點D,
∵OB=6 cm,C為OB的中點,∴OC=3 cm.
∵∠AOB=120°,∴∠COD=60°.∴∠OCD=30°.
∴在Rt△CDO中,OD=OC=cm.
∴CD=== (cm).
∴S△AOC=AO·CD=×6×= (cm2).
又∵S扇形OAB==12π(cm2),
∴S陰影=S扇形OAB-S△AOC=12π-= (cm2),
即陰影部分的面積為cm2.
科目:初中數學 來源: 題型:
【題目】《如果想毀掉一個孩子,就給他一部手機!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從 2018 年9月新學期起小學和初中禁止學生使用手機.為了解學生手機使用情況,某學校開展了“手機伴我健康行”主題活動,他們隨機抽取部分學生進行“使用手機目的”和“每周使用手機的時間”的問卷調查,并繪制成如圖①,②的 統(tǒng)計圖,已知“查資料”的人數是 40人.請你根據以上信息解答下列問題:
(1)在扇形統(tǒng)計圖中,“玩游戲”對應的百分比為______,圓心角度數是______度;
(2)補全條形統(tǒng)計圖;
(3)該校共有學生2100人,估計每周使用手機時間在2 小時以上(不含2小時)的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線l與⊙O相離,OA⊥l于點A,OA=5,OA與⊙O相交于點P,AB與⊙O相切于點B,BP的延長線交直線l于點C.
(1)試判斷線段AB與AC的數量關系,并說明理由;
(2)若在⊙O上存在點Q,使△QAC是以AC為底邊的等腰三角形,求⊙O的半徑r的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商家計劃從廠家采購空調和冰箱兩種產品共20臺,空調的采購單價y1(元/臺)與采購數量x1(臺)滿足y1=﹣20x1+1500(0<x1≤20,x1為整數);冰箱的采購單價y2(元/臺)與采購數量x2(臺)滿足y2=﹣10x2+1300(0<x2≤20,x2為整數).
(1)經商家與廠家協(xié)商,采購空調的數量不少于冰箱數量的,且空調采購單價不低于1200元,問該商家共有幾種進貨方案?
(2)該商家分別以1760元/臺和1700元/臺的銷售單價售出空調和冰箱,且全部售完.在(1)的條件下,問采購空調多少臺時總利潤最大?并求最大利潤.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市開展早市促銷活動,為早到的顧客準備一份簡易早餐,餐品為四樣A:菜包、B:面包、C:雞蛋、D:油條.超市約定:隨機發(fā)放,早餐一人一份,一份兩樣,一樣一個.
(1)按約定,“某顧客在該天早餐得到兩個雞蛋”是 事件(填“隨機”、“必然”或“不可能”);
(2)請用列表或畫樹狀圖的方法,求出某顧客該天早餐剛好得到菜包和油條的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在□ABCD,過點D作DE⊥AB于點E,點F在邊CD上,DF=BE,連接AF,BF.
(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,BC是路邊坡角為30°,長為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DA和DB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°和60°(圖中的點A、B、C、D、M、N均在同一平面內,CM∥AN).
(1)求燈桿CD的高度;
(2)求AB的長度(結果精確到0.1米).(參考數據:=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點都在格點上,點A的坐標為(2,4).
(1)畫出△ABC關于x軸對稱的△A1B1C1,并寫出點A1的坐標A1 ________________.
(2)畫出△A1B1C1繞原點O旋轉180°后得到的△A2B2C2,并寫出點A2的坐標A2__________________.
(3) △ABC是否為直角三角形?答_________(填是或者不是).
(4)利用格點圖,畫出BC邊上的高AD,并求出AD的長,AD=_____________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com