精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在⊙O中,半徑OA6 cmCOB的中點,∠AOB120°,求陰影部分的面積.

【答案】陰影部分的面積為cm2.

【解析】

過點CCDAO,交AO的延長線于點D,在RtOCD中,求得CD 的長,即可求得△AOC的面積,再求得扇形AOB的面積,利用S陰影S扇形OABSAOC即可求得陰影部分的面積.

過點CCDAO,交AO的延長線于點D,

OB=6 cm,C為OB的中點,∴OC=3 cm.

∵∠AOB=120°,∴∠COD=60°.∴∠OCD=30°.

∴在RtCDO中,OD=OC=cm.

CD (cm)

SAOCAO·CD×6× (cm2)

又∵S扇形OAB12π(cm2),

S陰影S扇形OABSAOC12π (cm2),

即陰影部分的面積為cm2.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】《如果想毀掉一個孩子,就給他一部手機!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從 2018 9月新學期起小學和初中禁止學生使用手機.為了解學生手機使用情況,某學校開展了手機伴我健康行主題活動,他們隨機抽取部分學生進行使用手機目的每周使用手機的時間的問卷調查,并繪制成如圖①,②的 統(tǒng)計圖,已知查資料的人數是 40人.請你根據以上信息解答下列問題:

(1)在扇形統(tǒng)計圖中,玩游戲對應的百分比為______,圓心角度數是______度;

(2)補全條形統(tǒng)計圖;

(3)該校共有學生2100人,估計每周使用手機時間在2 小時以上(不含2小時)的人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知直線l與⊙O相離,OAl于點AOA5,OA與⊙O相交于點PAB與⊙O相切于點B,BP的延長線交直線l于點C.

(1)試判斷線段ABAC的數量關系,并說明理由;

(2)若在⊙O上存在點Q,使QAC是以AC為底邊的等腰三角形,求⊙O的半徑r的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商家計劃從廠家采購空調和冰箱兩種產品共20臺,空調的采購單價y1(元/臺)與采購數量x1(臺)滿足y1=﹣20x1+15000x1≤20,x1為整數);冰箱的采購單價y2(元/臺)與采購數量x2(臺)滿足y2=﹣10x2+13000x2≤20,x2為整數).

1)經商家與廠家協(xié)商,采購空調的數量不少于冰箱數量的,且空調采購單價不低于1200元,問該商家共有幾種進貨方案?

2)該商家分別以1760/臺和1700/臺的銷售單價售出空調和冰箱,且全部售完.在(1)的條件下,問采購空調多少臺時總利潤最大?并求最大利潤.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某超市開展早市促銷活動,為早到的顧客準備一份簡易早餐,餐品為四樣A:菜包、B:面包、C:雞蛋、D:油條.超市約定:隨機發(fā)放,早餐一人一份,一份兩樣,一樣一個.

(1)按約定,某顧客在該天早餐得到兩個雞蛋   事件(填隨機”、“必然不可能”);

(2)請用列表或畫樹狀圖的方法,求出某顧客該天早餐剛好得到菜包和油條的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖, ABC, AB=10, BC=8, AC=7, OABC的內切圓, 切點分別是D, E, F. AD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】□ABCD,過點DDE⊥AB于點E,點F在邊CD上,DFBE,連接AFBF.

1)求證:四邊形BFDE是矩形;

2)若CF3BF4,DF5,求證:AF平分∠DAB.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,BC是路邊坡角為30°,長為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DADB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°60°(圖中的點A、B、C、D、M、N均在同一平面內,CMAN).

(1)求燈桿CD的高度;

(2)求AB的長度(結果精確到0.1米).(參考數據:=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABC的三個頂點都在格點上,點A的坐標為(2,4).

(1)畫出ABC關于x軸對稱的A1B1C1,并寫出點A1的坐標A1 ________________

(2)畫出A1B1C1繞原點O旋轉180°后得到的A2B2C2,并寫出點A2的坐標A2__________________

(3) ABC是否為直角三角形?答_________(填是或者不是).

(4)利用格點圖,畫出BC邊上的高AD,并求出AD的長,AD=_____________.

查看答案和解析>>

同步練習冊答案