【題目】如圖, △ABC中, AB=10, BC=8, AC=7, ⊙O為△ABC的內(nèi)切圓, 切點(diǎn)分別是D, E, F. 求AD的長(zhǎng).
【答案】AD=4.5.
【解析】
連結(jié)OD、OF、 OA,根據(jù)切線(xiàn)的性質(zhì)得到直角△AOD和直角△AOF,再根據(jù)直角三角形的判定HL證明全等,得到AD=AF,同理得到BD=BE, CE=CF,然后根據(jù)切線(xiàn)長(zhǎng)定理求解即可.
解:連結(jié)OD, OF, OA.
∵AB, AC是⊙O的切線(xiàn), ∴∠ODA=∠OFA=90°.
又∵OD=OF, OA=OA, ∴Rt△OAD≌Rt△OAF, ∴AD=AF.
同理, BD=BE, CE=CF.
∵BE+CE=BC=8, ∴BD+BE+CE+CF=16. ∴2AD=(10+8+7)-16=9, 即AD=4.5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D、E分別在AB、AC上,且CE=BC,連接CD,將線(xiàn)段CD繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)90°后得到CF,連接EF.
(1)求證:△BDC≌△EFC;
(2)若EF∥CD,求證:∠BDC=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過(guò)點(diǎn)A(﹣3,﹣3).
(1)求正比例函數(shù)和反比例函數(shù)的表達(dá)式;
(2)把直線(xiàn)OA向上平移后與反比例函數(shù)的圖象交于點(diǎn)B(﹣6,m),與x軸交于點(diǎn)C,求m的值和直線(xiàn)BC的表達(dá)式;
(3)在(2)的條件下,直線(xiàn)BC與y軸交于點(diǎn)D,求以點(diǎn)A,B,D為頂點(diǎn)的三角形的面積;
(4)在(3)的條件下,點(diǎn)A,B,D在二次函數(shù)的圖象上,試判斷該二次函數(shù)在第三象限內(nèi)的圖象上是否存在一點(diǎn)E,使四邊形OECD的面積S1與四邊形OABD的面積S滿(mǎn)足:S1=S?若存在,求點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,過(guò)點(diǎn)C作CE⊥BC交對(duì)角線(xiàn)BD于點(diǎn)E,且DE=CE,若,則DE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線(xiàn)交BC于點(diǎn)E,交DC的延長(zhǎng)線(xiàn)于點(diǎn)F,BG⊥AE于點(diǎn)G,BG=4,則△EFC的周長(zhǎng)為( )
A. 11 B. 10 C. 9 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一漁船上的漁民在A處看見(jiàn)燈塔M在北偏東60°方向,這艘漁船以28海里/時(shí)的速度向正東方向航行,半小時(shí)后到達(dá)B處,在B處看見(jiàn)燈塔M在北偏東15°方向,此時(shí)燈塔M與漁船的距離是( )
A. 7海里 B. 14海里 C. 7海里 D. 14海里
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB 為⊙O 的直徑,C 為⊙O 上一點(diǎn),AD⊥CE 于點(diǎn) D,AC 平分∠DAB.
(1) 求證:直線(xiàn) CE 是⊙O 的切線(xiàn);
(2) 若 AB=10,CD=4,求 BC 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等腰三角形ABC,CA=CB=6cm,AB=8cm,點(diǎn)O為△ABC內(nèi)一點(diǎn)(點(diǎn)O不在△ABC邊界上).請(qǐng)你運(yùn)用圖形旋轉(zhuǎn)和“兩點(diǎn)之間線(xiàn)段最短”等數(shù)學(xué)知識(shí)、方法,求出OA+OB+OC的最小值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com