【題目】如圖,△ABC中,∠ACB=90°,點E在BC上,以CE為直徑的⊙O交AB于點F,AO∥EF
(1)求證:AB是⊙O的切線;
(2)如圖2,連結(jié)CF交AO于點G,交AE于點P,若BE=2,BF=4,求 的值.
【答案】
(1)證明:連接OF,如圖,
∵OA∥EF,
∴∠1=∠3,∠2=∠4,
∵OE=OF,
∴∠3=∠4,
∴∠1=∠2,
在△AOC和△AOF中
,
∴△AOC≌△AOF,
∴∠ACO=∠AFO=90°,
∴OF⊥AB,
∴AB是⊙O的切線;
(2)解:在Rt△OFB中,設OE=OF=r,
∵OF2+BF2=OB2,
∴r2+42=(r+2)2,解得r=3,
∴OB=5,
∴OA∥EF,
∴△BEF∽△BOA,
∴ = = ,
∵EF∥OA,
∴△PEF∽△PAO,
∴ = = ,
∴ = .
【解析】(1)連接OF,如圖,利用平行線的性質(zhì)得到∠1=∠3,∠2=∠4,加上∠3=∠4,則∠1=∠2,再證明△AOC≌△AOF得到∠ACO=∠AFO=90°,然后根據(jù)切線的判定定理可得到結(jié)論;(2)在Rt△OFB中,設OE=OF=r,利用勾股定理得到r2+42=(r+2)2 , 解得r=3,則OB=5,再證明△BEF∽△BOA得到 = = ,然后證明△PEF∽△PAO,利用相似比可得到 的值.
【考點精析】利用相似三角形的判定與性質(zhì)對題目進行判斷即可得到答案,需要熟知相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
科目:初中數(shù)學 來源: 題型:
【題目】(14分) 已知:在△ABC中,AC=BC,∠ACB=90°,點D是AB的中點,點E是AB邊上一點.
(1)直線BF垂直于CE于點F,交CD于點G(如圖1),求證:AE=CG;
(2)直線AH垂直于CE,垂足為H,交CD的延長線于點M(如圖2),找出圖中與BE相等的線段,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了促進學生多樣化發(fā)展,某校組織開展了社團活動,分別設置了體育類、藝術(shù)類、文學類及其它類社團(要求人人參與社團,每人只能選擇一項).為了解學生喜愛哪種社團活動,學校做了一次抽樣調(diào)查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,完成下列問題:
(1)此次共調(diào)查了多少人?
(2)求文學社團在扇形統(tǒng)計圖中所占圓心角的度數(shù)
(3)若該校有1500名學生,請估計喜歡體育類社團的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知函數(shù)y= (x>0)的圖象經(jīng)過點A、B,點B的坐標為(2,2).過點A作AC⊥x軸,垂足為C,過點B作BD⊥y軸,垂足為D,AC與BD交于點F.一次函數(shù)y=ax+b的圖象經(jīng)過點A、D,與x軸的負半軸交于點E
(1)若AC= OD,求a、b的值;
(2)若BC∥AE,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點E在邊AB上,且BE=2AE.將△ADE沿ED對折至△FDE,延長EF交邊BC于點G,連結(jié)DG,BF.下列結(jié)論:①△DCG≌△DFG;②BG=GC;③DG∥BF;④S△BFG=3.其中正確的結(jié)論是(填寫序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC=10,BC=12,動點P從A點出發(fā),按A→B的方向在AB上移動,動點Q從B點出發(fā),按B→C的方向在BC上移動(當P點到達點B時,P點和Q點停止移動,且兩點的移動速度相等),記PA=x,△BPQ的面積為y,則y關(guān)于x的函數(shù)圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y= x的圖象交于點A、B,點B的橫坐標是4.點P是第一象限內(nèi)反比例函數(shù)圖象上的動點,且在直線AB的上方.
(1)若點P的坐標是(1,4),直接寫出k的值和△PAB的面積;
(2)設直線PA、PB與x軸分別交于點M、N,求證:△PMN是等腰三角形;
(3)設點Q是反比例函數(shù)圖象上位于P、B之間的動點(與點P、B不重合),連接AQ、BQ,比較∠PAQ與∠PBQ的大小,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店購進甲乙兩種商品,甲的進貨單價比乙的進貨單價高20元,已知20個甲商品的進貨總價與25個乙商品的進貨總價相同.
(1)求甲、乙每個商品的進貨單價;
(2)若甲、乙兩種商品共進貨100件,要求兩種商品的進貨總價不高于9000元,同時甲商品按進價提高10%后的價格銷售,乙商品按進價提高25%后的價格銷售,兩種商品全部售完后的銷售總額不低于10480元,問有哪幾種進貨方案?
(3)在條件(2)下,并且不再考慮其他因素,若甲乙兩種商品全部售完,哪種方案利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀:我們約定,在平面直角坐標系中,經(jīng)過某點且平行于坐標軸或平行于兩坐標軸夾角平分線的直線,叫該點的“特征線”.例如,點M(1,3)的特征線有:x=1,y=3,y=x+2,y=﹣x+4.
問題與探究:如圖,在平面直角坐標系中有正方形OABC,點B在第一象限,A、C分別在x軸和y軸上,拋物線 經(jīng)過B、C兩點,頂點D在正方形內(nèi)部.
(1)直接寫出點D(m,n)所有的特征線;
(2)若點D有一條特征線是y=x+1,求此拋物線的解析式;
(3)點P是AB邊上除點A外的任意一點,連接OP,將△OAP沿著OP折疊,點A落在點A′的位置,當點A′在平行于坐標軸的D點的特征線上時,滿足(2)中條件的拋物線向下平移多少距離,其頂點落在OP上?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com