如圖所示,已知兩點A(-1,0),B(4,0),以AB為直徑的半圓P交y軸于點C.
(1)求經(jīng)過A、B、C三點的拋物線的解析式;
(2)設(shè)弦AC的垂直平分線交OC于D,連接AD并延長交半圓P于點E,相等嗎?請證明你的結(jié)論;
(3)設(shè)點M為x軸負半軸上一點,OM=AE,是否存在過點M的直線,使該直線與(1)中所得的拋物線的兩個交點到y(tǒng)軸的距離相等?若存在,求出這條直線對應(yīng)函數(shù)的解析式;若不存在.請說明理由.
(1);
(2),證明見解析;
(3)不存在,理由見解析.

試題分析:(1)本題的關(guān)鍵是求出C點的坐標,可通過構(gòu)建直角三角形來求解.連接BC,即可根據(jù)射影定理求出OC的長,也就得出了C點的坐標,已知了A,B,C三點的坐標后即可用待定系數(shù)法求出拋物線的解析式.
(2)求弧AC=弧CE,可通過弧對的圓周角相等來證,即證∠EAC=∠ABC,根據(jù)等角的余角相等不難得出∠ACO=∠ABC,因此只需證∠DCA=∠DAC即可.由于PD是AC的垂直平分線,根據(jù)線段垂直平分線上的點到線段兩端點的距離相等,可得出DA=DC,即可證得∠DAC=∠DCA,由此可證出弧AC=弧CE.
(3)可先求出M點的坐標,由于OM=AE,因此要先求出AE的長.如果連接PC,設(shè)PC與AE的交點為F,那么OF=OM=AE,OF的長可通過證三角形CAO和AFC全等來得出,有了OM的長就能得出M的坐標.可先設(shè)出過M于拋物線相交的直線的解析式.然后根據(jù)兩交點到y(tǒng)軸的距離相等,即橫坐標互為相反數(shù),可根據(jù)(1)的拋物線的解析式表示出著兩個交點的坐標,然后將兩交點和M的坐標代入直線的解析式中,可得出一個方程組,如果方程組無解,那么不存在這樣的直線,如果有解,可根據(jù)方程組的解得出直線的解析式.
(1)如圖,連接BC,
∵AB為直徑,
∴∠ACB=90度.
∴OC2=OA•OB,
∵A(-1,0),B(4,0),
∴OA=1,OB=4,
∴OC2=4,
∴OC=2,
∴C的坐標是(0,2).
設(shè)經(jīng)過A、B、C三點的拋物線的解析式為y=a(x+1)(x-4),
把x=0時,y=2代入上式得:
a=-

(2)
證明:∵∠ACB=90度.
∴∠CAB+∠ABC=90度.
∵∠CAB+∠ACO=90度.
∴∠ABC=∠ACO.
∵PD是AC的垂直平分線,
∴DA=DC,
∴∠EAC=∠ACO.
∴∠EAC=∠ABC,

(3)不存在.
如圖,連接PC交AE于點F,
,
∴PC⊥AE,AF=EF,
∵∠EAC=∠ACO,∠AFC=∠AOC=90°,
AC=CA,
∴△ACO≌△CAF,
∴AF=CO=2,
∴AE=4.
∵OM=AE,
∴OM=2.
∴M(-2,0),
假設(shè)存在,設(shè)經(jīng)過M(-2,0)和相交的直線是y=kx+b;
因為交點到y(tǒng)軸的距離相等,所以應(yīng)該是橫坐標互為相反數(shù),
設(shè)兩橫坐標分別是a和-a,則兩個交點分別是(a,)與(-a,),
把以上三點代入y=kx+b,得
 ,
此方程無解,所以不存在這樣的直線.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,拋物線經(jīng)過A(-1,0),C(3,-2)兩點,與軸交于點D,與軸交于另一點B.
(1)求此拋物線的解析式;
(2)若直線)將四邊形ABCD面積二等分,求的值;
(3)如圖2,過點E(1,1)作EF⊥軸于點F,將△AEF繞平面內(nèi)某點P旋轉(zhuǎn)180°得△MNQ(點M、N、Q分別與點A、E、F對應(yīng)),使點M、N在拋物線上,求點N和點P的坐標?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=﹣x2+bx+4與x軸相交于A、B兩點,與y軸相交于點C,若已知A點的坐標為A(﹣2,0).
(1)求拋物線的解析式及它的對稱軸;
(2)求點C的坐標,連接AC、BC并求線段BC所在直線的解析式;
(3)在拋物線的對稱軸上是否存在點Q,使△ACQ為等腰三角形?若存在,求出符合條件的Q點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將一條拋物線向左平移2個單位后得到了y=2x2的函數(shù)圖象,則這條拋物線是(   )  
A.y=2x2+2B.y=2x2-2C.y=2(x-2)2D.y=2(x+2)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,已知點A、B、C在x軸上,點D、E在y軸上,OA=OD=2,OC=OE=4,B為線段OA的中點,直線AD與經(jīng)過B、E、C三點的拋物線交于F、G兩點,與其對稱軸交于M,點P為線段FG上一個動點(點P與F、G不重合),作PQ∥y軸與拋物線交于點Q.
(1)若經(jīng)過B、E、C三點的拋物線的解析式為y=-x2+(2b-1)x+c-5,則b=         ,c=         (直接填空)
(2)①以P、D、E為頂點的三角形是直角三角形,則點P的坐標為         (直接填空)
②若拋物線頂點為N,又PE+PN的值最小時,求相應(yīng)點P的坐標.
(3)連結(jié)QN,探究四邊形PMNQ的形狀:
①能否成為平行四邊形
②能否成為等腰梯形?若能,請直接寫出點P的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,∠C=90°,AC=4,BC=2,點A、C分別在x軸、y軸上,當點A在x軸上運動時,點C隨之在y軸上運動.在運動過程中,點B到原點的最大距離是(    )

A.6      B.2      C.2           D.2+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)≠0)圖象如圖所示,下列結(jié)論:①>0;②=0;③當≠1時,;④>0;⑤若,且,則=2.其中正確的有(  )
A.①②③ B.②④ C.②⑤ D.②③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某賓館有30個房間供游客住宿,當每個房間的房價為每天120元時,房間會全部住滿.當每個房間每天的房價每增加10元時,就會有一個房間空閑.賓館需對游客居住的每個房間每天支出20元的各種費用.根據(jù)規(guī)定,每個房間每天的房價不得高于210元.設(shè)每個房間的房價增加x元(x為10的正整數(shù)倍).
(1)設(shè)一天訂住的房間數(shù)為y,直接寫出y與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)設(shè)賓館一天的利潤為w元,求w與x的函數(shù)關(guān)系式;
(3)一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知邊長為4的正方形ABCD,E是BC邊上一動點(與B、C不重合),連結(jié)AE,作EF⊥AE交∠BCD的外角平分線于F,設(shè)BE=x,△ECF的面積為y,下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是(   )

A.          B.
C.        D.

查看答案和解析>>

同步練習(xí)冊答案