二次函數(shù)≠0)圖象如圖所示,下列結(jié)論:①>0;②=0;③當≠1時,;④>0;⑤若,且,則=2.其中正確的有( 。
A.①②③ B.②④ C.②⑤ D.②③⑤
D

試題分析:由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點判斷c與0的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.拋物線的開口向下,則a<0;…①
拋物線的對稱軸為x=1,則-=1,b="-2a" ∴b>0   2a+b="0…" ② 拋物線交y軸于正半軸,則c>0;…③
由圖像知x=1時 y="a+b+c" 是拋物線頂點的縱坐標,是最大值,當m≠1  y=+c不是頂點縱坐標,不是最大值 ∴ (故③正確)
由②知:b>0,b+2a=0;(故②正確) 又由①②③得:abc<0 (故①錯誤)
由圖知:當x=-1時,y<0;即a-b+c<0,b>a+c;(故④錯誤)
⑤若 得-()=-ax22-bx2=a(x12-x22)+b(x1-x2)=a(x1+x2)(x1-x2)+b(x1-x2)= (x1-x2)[a(x1+x2)+b]="0" ∵ ∴a(x1+x2)+b="0" ∴(x1+x2)==-="2" (故⑤正確)
故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線與x軸,y軸分別相交于點B,點C,經(jīng)過B、C兩點的拋物線與x軸的另一交點為A,頂點為P,且對稱軸是直線
(1)求A點的坐標及該拋物線的函數(shù)表達式;
(2)求出∆PBC的面積;
(3)請問在對稱軸右側(cè)的拋物線上是否存在點Q,使得以點A、B、C、Q所圍成的四邊形面積是∆PBC的面積的?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,現(xiàn)有一張邊長為4的正方形紙片ABCD,點P為正方形AD邊上的一點(不與點A、點D重合)將正方形紙片折疊,使點B落在P處,點C落在G處,PG交DC于H,折痕為EF,連接BP、BH.
(1)求證:∠APB=∠BPH;
(2)當點P在邊AD上移動時,△PDH的周長是否發(fā)生變化?并證明你的結(jié)論;
(3)設(shè)AP為x,四邊形EFGP的面積為S,求出S與x的函數(shù)關(guān)系式,試問S是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,直線與拋物線交于A、B兩點,點A在x軸上,點B的橫坐標為-8.
(1)求該拋物線的解析式;
(2)點P是直線AB上方的拋物線上一動點(不與點A、B重合),過點P作x軸的垂線,垂足為C,交直線AB于點D,作PE⊥AB于點E.
①設(shè)△PDE的周長為l,點P的橫坐標為x,求l關(guān)于x的函數(shù)關(guān)系式,并求出l的最大值;
②連接PA,以PA為邊作圖示一側(cè)的正方形APFG.隨著點P的運動,正方形的大小、位置也隨之改變.當頂點F或G恰好落在y軸上時,直接寫出對應(yīng)的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

實驗數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5時內(nèi)其血液中酒精含量y(毫克/百毫升)與時間(時)的關(guān)系可近似地用二次函數(shù)刻畫;1.5時后(包括1.5時)y與x可近似地用反比例函數(shù)(k>0)刻畫(如圖所示).
(1)根據(jù)上述數(shù)學(xué)模型計算:
①喝酒后幾時血液中的酒精含量達到最大值?最大值為多少?
②當=5時,y=45.求k的值.
(2)按國家規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升時屬于“酒后駕駛”,不能駕車上路.參照上述數(shù)學(xué)模型,假設(shè)某駕駛員晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否駕車去上班?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線與x軸的交點為A、D(A在D的右側(cè)),與y軸的交點為C.
(1)直接寫出A、D、C三點的坐標;
(2)在拋物線的對稱軸上找一點M,使得MD+MC的值最小,并求出點M的坐標;
(3)設(shè)點C關(guān)于拋物線對稱的對稱點為B,在拋物線上是否存在點P,使得以A、B、C、P四點為頂點的四邊形為梯形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知兩點A(-1,0),B(4,0),以AB為直徑的半圓P交y軸于點C.
(1)求經(jīng)過A、B、C三點的拋物線的解析式;
(2)設(shè)弦AC的垂直平分線交OC于D,連接AD并延長交半圓P于點E,相等嗎?請證明你的結(jié)論;
(3)設(shè)點M為x軸負半軸上一點,OM=AE,是否存在過點M的直線,使該直線與(1)中所得的拋物線的兩個交點到y(tǒng)軸的距離相等?若存在,求出這條直線對應(yīng)函數(shù)的解析式;若不存在.請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

“如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個公共點,那么一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根.”請根據(jù)你對這句話的理解,解決下面問題:若m、n(m<n)是關(guān)于x的方程的兩根,且a < b, 則a、b、m、n 的大小關(guān)系是(   ) 
A.m < a < b< nB.a(chǎn) < m < n < bC.a(chǎn) < m < b< nD.m < a < n < b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,□ABCD中,對角線BD⊥AB,AB=5,AD邊上的高為.等腰直角△EFG中,EF=4, ∠EGF=45°,且△EFG與□ABCD位于直線AD的同側(cè),點F與點D重合,GF與AD在同一直線上.△EFG從點D出發(fā)以每秒1個單位的速度沿射線DA方向平移,當點G到點A時停止運動;同時點P也從點A出發(fā),以每秒3個單位的速度沿折線AD→DC方向運動,到達點C時停止運動,設(shè)運動的時間為t.
(1)求的長度;
(2)在平移的過程中,記相互重疊的面積為,請直接寫出面積與運動時間的函數(shù)關(guān)系式,并寫出的取值范圍;
(3)如圖2,在運動的過程中,若線段與線段交于點,連接.是否存在這樣的時間,使得為等腰三角形?若存在,求出對應(yīng)的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案