【題目】如圖,拋物線y=ax2﹣5ax+c與坐標(biāo)軸分別交于點A,C,E三點,其中A(﹣3,0),C(0,4),點Bx軸上,AC=BC,過點BBDx軸交拋物線于點D,點M,N分別是線段CO,BC上的動點,且CM=BN,連接MN,AM,AN.

(1)求拋物線的解析式及點D的坐標(biāo);

(2)當(dāng)CMN是直角三角形時,求點M的坐標(biāo);

(3)試求出AM+AN的最小值.

【答案】(1)拋物線解析式為y=﹣x2+x+4;D點坐標(biāo)為(3,5);(2)M點的坐標(biāo)為(0,)或(0,);(3)AM+AN的最小值為

【解析】1)利用待定系數(shù)法求拋物線解析式;利用等腰三角形的性質(zhì)得B(3,0),然后計算自變量為3所對應(yīng)的二次函數(shù)值可得到D點坐標(biāo);

(2)利用勾股定理計算出BC=5,設(shè)M(0,m),則BN=4﹣m,CN=5﹣(4﹣m)=m+1,由于∠MCN=OCB,根據(jù)相似三角形的判定方法,當(dāng)時,CMN∽△COB,于是有∠CMN=COB=90°,即;當(dāng)時,CMN∽△CBO,于是有∠CNM=COB=90°,即,然后分別求出m的值即可得到M點的坐標(biāo);

(3)連接DN,AD,如圖,先證明ACM≌△DBN,則AM=DN,所以AM+AN=DN+AN,利用三角形三邊的關(guān)系得到DN+AN≥AD(當(dāng)且僅當(dāng)點A、N、D共線時取等號),然后計算出AD即可.

1)把A(﹣3,0),C(0,4)代入y=ax2﹣5ax+c,解得

∴拋物線解析式為y=﹣x2+x+4;

AC=BC,COAB,

OB=OA=3,

B(3,0),

BDx軸交拋物線于點D,

D點的橫坐標(biāo)為3,

當(dāng)x=3時,y=﹣×9+×3+4=5,

D點坐標(biāo)為(3,5);

(2)在RtOBC中,BC==5,

設(shè)M(0,m),則BN=4﹣m,CN=5﹣(4﹣m)=m+1,

∵∠MCN=OCB,

∴當(dāng)時,△CMN∽△COB,則∠CMN=COB=90°,

,解得m=,此時M點坐標(biāo)為(0,);

當(dāng)時,△CMN∽△CBO,則∠CNM=COB=90°,

,解得m=,此時M點坐標(biāo)為(0,);

綜上所述,M點的坐標(biāo)為(0,)或(0,);

(3)連接DN,AD,如圖,

AC=BC,COAB,

OC平分∠ACB,

∴∠ACO=BCO,

BDOC,

∴∠BCO=DBC,

DB=BC=AC=5,CM=BN,

∴△ACM≌△DBN,

AM=DN,

AM+AN=DN+AN,

DN+AN≥AD(當(dāng)且僅當(dāng)點A、N、D共線時取等號),

DN+AN的最小值=

AM+AN的最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】黃巖島是我國南沙群島的一個小島,漁產(chǎn)豐富.一天某漁船離開港口前往該海域捕魚.捕撈一段時間后,發(fā)現(xiàn)一外國艦艇進(jìn)入我國水域向黃巖島駛來,漁船向漁政部門報告,并。立即返航.漁政船接到報告后,立即從該港口出發(fā)趕往黃巖島.下圖是漁政船及漁船與港口的距離s和漁船離開港口的時間t之間的函數(shù)圖象.(假設(shè)漁船與漁政船沿同一航線航行)

(1)直接寫出漁船離開港口的距離s和漁船離開港口的時間t之間的函數(shù)關(guān)系式

(2)求漁船與漁政船相遇對,兩船與黃巖島的距離、

(3在漁政船駛往黃巖的過程中,求漁船從港口 出發(fā)經(jīng)過多長時間與漁政船相距30海里?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點表示的數(shù)為,點表示的數(shù)為,是數(shù)軸上一點,且,動點從點出發(fā),以每秒個單位長度的速度沿數(shù)軸向左勻速運動,設(shè)運動時間為秒.

(1)數(shù)軸上點表示的數(shù)為 ,并用含的代數(shù)式表示點所表示的數(shù)為 ;

(2)設(shè)的中點,的中點,點在運動過程中,線段的長度是否發(fā)生變化?若變化,請說明理由,若不變,求線段的長度;

(3)動點從點出發(fā),以每秒個單位長度的速度沿數(shù)軸向左勻速運動,動點從點出發(fā),以點每秒個單位長度沿數(shù)軸向左勻速運動,若三點同時出發(fā),在運動過程中,的距離,距離中,是否會有這兩段距離相等的時候?若有,請求出此時的值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某一出租車一天下午以鼓樓為出發(fā)點在東西方向運營,向東走為正,向西走為負(fù),行車?yán)锍蹋▎挝唬?/span>km)依先后次序記錄如下:.

1)將最后一名乘客送到目的地,出租車離鼓樓出發(fā)點多遠(yuǎn)?在鼓樓的什么方向?

2)若每千米的價格為2.4元,司機(jī)一個下午的營業(yè)額是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)有理數(shù)、、在數(shù)軸上的對應(yīng)點如圖所示,化簡代數(shù)式:

2)哈市某垃圾處理場一周處理生活垃圾任務(wù)為210噸,計劃每天處理30噸,由于各種原因,實際每天處理量與計劃相比有出入,某周七天的實際處理情況記錄如下:

+6;-3;+4;-1;+2;-5;0

垃圾場這一周實際處理生活垃圾是多少噸?

若該垃圾場實行計量工資,每處理一噸生活垃圾給300元,同時又規(guī)定超額處理一噸垃圾另外獎100元,完不成任務(wù)的少處理一噸另外扣100元,那么該場工人這一周的工資總額是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】幸福是奮斗出來的,在數(shù)軸上,若CA的距離剛好是3,則C點叫做A幸福點,若CA、B的距離之和為6,則C叫做A、B幸福中心

(1)如圖1,點A表示的數(shù)為﹣1,則A的幸福點C所表示的數(shù)應(yīng)該是   ;

(2)如圖2,M、N為數(shù)軸上兩點,點M所表示的數(shù)為4,點N所表示的數(shù)為﹣2,點C就是M、N的幸福中心,則C所表示的數(shù)可以是   (填一個即可);

(3)如圖3,A、B、P為數(shù)軸上三點,點A所表示的數(shù)為﹣1,點B所表示的數(shù)為4,點P所表示的數(shù)為8,現(xiàn)有一只電子螞蟻從點P出發(fā),以2個單位每秒的速度向左運動,當(dāng)經(jīng)過多少秒時,電子螞蟻是AB的幸福中心?

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�