【題目】一副含 角的三角板 疊合在一起,邊 重合, (如圖1),點 為邊 的中點,邊 相交于點 ,此時線段 的長是 . 現(xiàn)將三角板 繞點 按順時針方向旋轉(zhuǎn)(如圖2),在 的變化過程中,點 相應移動的路徑長共為 . (結果保留根號)

【答案】12( -1)cm;(12 -18)cm
【解析】解:如圖1,過H作HI⊥AC于I,
∵BC=EF=12cm,
∴AC=BC·tan∠ABC=×12=4cm,
∵∠BCD=45°,所以∠ACD=45°,
設HI=x,則IC=x,AI=x,
∵AC=AI+IC,
∴4=x+x,
解得x=6(-1),
則AH=HI=12(1-),
∵AB=2AC=8
∴BH==12()cm,
所以答案是12()cm
如圖2和圖3,在 ∠ C G F 從 0 ° 到 60 ° 的變化過程中,點H先向AB方向移,在往BA方向移,直到H與F重合(下面證明此時∠CGF=60度),此時BH的值最大,
如圖3,當F與H重合時,連接CF,因為BG=CG=GF,
所以∠BFC=90度,
∵∠B=30度,
∴∠BFC=60度,
由CG=GF可得∠CGF=60度.
∵BC=12cm,所以BF=BC=6
如圖2,當GH⊥DF時,GH有最小值,則BH有最小值,且GF//AB,連接DG,交AB于點K,則DG⊥AB,
∵DG=FG,
∴∠DGH=45度,
則KG=KH=GH=×6)=3,
BK=KG=3 ,
則BH=BK+KH=3+3,
則點H運動的總路程為(cm)
所以答案是()cm

【考點精析】認真審題,首先需要了解旋轉(zhuǎn)的性質(zhì)(①旋轉(zhuǎn)后對應的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC和ADE都是等腰直角三角形,CE與BD相交于點M,BD交AC于點N,

證明:(1)BD=CE. (2)BDCE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB∥CD,AD∥BC,∠DCE=90°,點E在線段AB上,∠FCG=90°,點F在直線AD上,∠AHG=90°.

(1)找出圖中與∠D相等的角,并說明理由;

(2)若∠ECF=25°,求∠BCD的度數(shù);

(3)在(2)的條件下,點C(點C不與B,H兩點重合)從點B出發(fā),沿射線BG的方向運動,其他條件不變,求∠BAF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為5,點A的坐標為(﹣4,0),點By軸上,若反比例函數(shù)k0)的圖象過點C,則該反比例函數(shù)的表達式為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列關于函數(shù) 的四個命題:①當 時, 有最小值10;② 為任意實數(shù), 時的函數(shù)值大于 時的函數(shù)值;③若 ,且 是整數(shù),當 時, 的整數(shù)值有 個;④若函數(shù)圖象過點 ,其中 ,則 .其中真命題的序號是( )
A.①
B.②
C.③
D.④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明為了了解氣溫對用電量的影響,對去年自己家的每月用電量和當?shù)貧鉁剡M行了統(tǒng)計.當?shù)厝ツ昝吭碌钠骄鶜鉁厝鐖D1,小明家去年月用電量如圖2.
根據(jù)統(tǒng)計表,回答問題:

(1)當?shù)厝ツ暝缕骄鶜鉁氐淖罡咧、最低值各為多少?相應月份的用電量各是多少?/span>
(2)請簡單描述月用電量與氣溫之間的關系;
(3)假設去年小明家用電量是所在社區(qū)家庭年用電量的中位數(shù),據(jù)此他能否預測今年該社區(qū)的年用電量?請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P為定角∠AOB的平分線上的一個定點,且∠MPN與∠AOB互補,若∠MPN在繞點P旋轉(zhuǎn)的過程中,其兩邊分別與OA、OB相交于M、N兩點,則以下結論:(1)PM=PN恒成立;(2)OM+ON的值不變;(3)四邊形PMON的面積不變;(4)MN的長不變,其中正確的個數(shù)為(
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形的頂點與坐標原點重合,其邊長為2,點,點分別在軸, 軸的正半軸上.函數(shù)的圖像與交于點,函數(shù)為常數(shù), )的圖像經(jīng)過點,與交于點,與函數(shù)的圖像在第三象服內(nèi)交于點,連接.

(1)求函數(shù)的表達式,并直接寫出兩點的坐標;

(2)的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“>”“<”填空

(1) 3.4 _____0 (2) 0 ______-22. 8

(3 ) -3______-4 (4) -______-0.3

(5) -0. 66_____- (6) -______-3.14

查看答案和解析>>

同步練習冊答案