【題目】已知拋物線與軸交于點(diǎn)、,與軸交于點(diǎn),則能使為等腰三角形的拋物線的條數(shù)是________.
【答案】4.
【解析】
整理拋物線解析式,確定出拋物線與x軸的一個(gè)交點(diǎn)A和y軸的交點(diǎn)C,然后求出AC的長(zhǎng)度,再分:
①k>0時(shí),點(diǎn)B在x軸正半軸時(shí),分AC=BC、AC=AB、AB=BC三種情況求解;
②k<0時(shí),點(diǎn)B在x軸的負(fù)半軸時(shí),點(diǎn)B只能在點(diǎn)A的左邊,只有AC=AB一種情況列式計(jì)算即可.
解:y=k(x+1)(x﹣)=(x+1)(kx﹣3),
所以,拋物線經(jīng)過點(diǎn)A(﹣1,0),C(0,﹣3),
AC==,
點(diǎn)B坐標(biāo)為(,0),
①k>0時(shí),點(diǎn)B在x正半軸上,
若AC=BC,則=,解得k=3,
若AC=AB,則+1=,解得k==,
若AB=BC,則+1=,解得k=;
②k<0時(shí),點(diǎn)B在x軸的負(fù)半軸,點(diǎn)B只能在點(diǎn)A的左側(cè),
只有AC=AB,則﹣1﹣=,解得k==,
所以,能使△ABC為等腰三角形的拋物線共有4條.
故答案是:4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB為半圓O的直徑,C、D是半圓O上的兩點(diǎn),若直徑AB的長(zhǎng)為4,且BC=2,∠DAC=15°.
(1)求∠DAB的度數(shù);
(2)求圖中陰影部分的面積(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)是一個(gè)單位長(zhǎng)度).
(1)畫出△ABC向下平移4個(gè)單位長(zhǎng)度得到的△A1B1C1,點(diǎn)C1的坐標(biāo)是 ;
(2)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點(diǎn)C2的坐標(biāo)是 ;
(3)△A2B2C2的面積是 平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某紡織廠生產(chǎn)的產(chǎn)品,原來每件出廠價(jià)為80元,成本為60元.由于在生產(chǎn)過程中平均每生產(chǎn)一件產(chǎn)品有0.5的污水排出,現(xiàn)在為了保護(hù)環(huán)境,需對(duì)污水凈化處理后再排出.已知每處理1污水的費(fèi)用為2元,且每月排污設(shè)備損耗為8000元.設(shè)現(xiàn)在該廠每月生產(chǎn)產(chǎn)品x件,每月純利潤(rùn)y元:
(1)求出y與x的函數(shù)關(guān)系式.(純利潤(rùn)=總收入-總支出)
(2)當(dāng)y=106000時(shí),求該廠在這個(gè)月中生產(chǎn)產(chǎn)品的件數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù),下列說法錯(cuò)誤的是( )
A. 當(dāng)時(shí),隨的增大而減小
B. 若圖象與軸有交點(diǎn),則
C. 當(dāng)時(shí),不等式的解集是
D. 若將圖象向上平移個(gè)單位,再向左平移個(gè)單位后過點(diǎn),則
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(-2,0),點(diǎn)B(0,4),點(diǎn)E在OB上,且∠OAE=∠OBA.
(1)如圖①,求點(diǎn)E的坐標(biāo)
(2)如圖②,將△AEO沿x軸向右平移得到△A′E′O′,連接A′B,BE′.
①設(shè)AA′=m,其中0<m<2,試用含m的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值時(shí)點(diǎn)E′的坐標(biāo);
②當(dāng)A′B+BE′取得最小值時(shí),求點(diǎn)E′的坐標(biāo)(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個(gè)測(cè)量彈跳力的體育器材,如圖所示,豎桿AC、BD的長(zhǎng)度分別為200厘米、300厘米,CD=300厘米.現(xiàn)有一人站在斜桿AB下方的點(diǎn)E處,直立、單手上舉時(shí)中指指尖(點(diǎn)F)到地面的高度為EF,屈膝盡力跳起時(shí),中指指尖剛好觸到斜桿AB上的點(diǎn)G處,此時(shí),就將EG與EF的差值y(厘米)作為此人此次的彈跳成績(jī).
(1)設(shè)CE=x(厘米),EF=a(厘米),求出由x和a表示y的計(jì)算公式;
(2)現(xiàn)有一男生,站在某一位置盡力跳起時(shí),剛好觸到斜桿.已知該同學(xué)彈跳時(shí)站的位置為x=150厘米,且a=205厘米.若規(guī)定y≥50,彈跳成績(jī)?yōu)閮?yōu);40≤y<50時(shí),彈跳成績(jī)?yōu)榱迹?/span>30≤y<40時(shí),彈跳成績(jī)?yōu)榧案,那么該生彈跳成?jī)處于什么水平?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,把繞著點(diǎn)逆時(shí)針旋轉(zhuǎn),得到,點(diǎn)在上.
(1)若,求得度數(shù);
(2)若,,求中邊上的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某店只銷售某種進(jìn)價(jià)為40元/kg的產(chǎn)品,已知該店按60元kg出售時(shí),每天可售出100kg,后來經(jīng)過市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低1元,則每天的銷售量可增加10kg.
(1)若單價(jià)降低2元,則每天的銷售量是_____千克,每天的利潤(rùn)為_____元;若單價(jià)降低x元,則每天的銷售量是_____千克,每天的利潤(rùn)為______元;(用含x的代數(shù)式表示)
(2)若該店銷售這種產(chǎn)品計(jì)劃每天獲利2240元,單價(jià)應(yīng)降價(jià)多少元?
(3)當(dāng)單價(jià)降低多少元時(shí),該店每天的利潤(rùn)最大,最大利潤(rùn)是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com