【題目】某學(xué)校需要購買A、B兩種品牌的籃球,購買A種品牌的籃球30個,B種品牌的籃球20個,共花費5400元,已知購買一個B種品牌的籃球比購買一個A鐘品牌的籃球多花20元.
(1)求購買一個A種品牌、一個B種品牌的籃球各需多少元?
(2)學(xué)校為了響應(yīng)習(xí)“籃球進校園”的號召,決定再次購進A、B兩種品牌球共45個,正好是上商場對商品的促銷活動,A品牌籃球售價比第一次購買時降低19元,B品牌籃球按第一次購買時售價的9折出售,如果學(xué)校此次購買A、B兩種品牌籃球的總費用不超過第一次花費的80%,且保證這次購買的B種品牌籃球不少于15個,則這次學(xué)校有幾種購買方案?
(3)學(xué)校在第二次購買活動中至少需要多少資金?
【答案】(1)購買一個A種品牌的籃球需要100元,購買一個B種品牌的籃球需要120元(2)11(3)至少需要4050元
【解析】
(1)根據(jù)題意可以列出相應(yīng)的二元一次方程組,從而可以解答本題;
(2)根據(jù)題意可以列出相應(yīng)的不等式組,本題得以解決;
(3)根據(jù)題意可以得到花費與購買A種品牌的函數(shù)關(guān)系式,然后根據(jù)一次函數(shù)的性質(zhì)即可解答本題.
解:(1)設(shè)A種品牌籃球的單價為x元,B種品牌籃球的單價為y元,
依題意得:,解得:,
答:購買一個A種品牌的籃球需要100元,購買一個B種品牌的籃球需要120元;
(2)設(shè)第二次購買A種籃球a個,則購買B種籃球(45﹣a)個,
依題意得:,
解得:20≤a≤30.
答:這次學(xué)校購買籃球有11種方案;
(3)設(shè)第二次購買45個籃球總共需要w元,
W=81a+120×0.9(45﹣a)=﹣27a+4860
∵﹣27<0,∴w隨a的增大而減小,
當(dāng)a=30時,w最小=4050
答:至少需要4050元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】北京世界園藝博覽會(簡稱“世園會”)園區(qū)4月29日正式開園,門票價格如下:
票種 | 票價(元/人) | |
指定日 | 普通票 | 160 |
優(yōu)惠票 | 100 | |
平日 | 普通票 | 120 |
優(yōu)惠票 | 80 |
注1:“指定日”為開園日(4月29日)、五一勞動節(jié)(5月1日)、端午節(jié)、中秋節(jié)、十一假期(含閉園日),“平日”為世園會會期除“指定日”外的其他日期;
注2:六十周歲及以上老人、十八周歲以下的學(xué)生均可購買優(yōu)惠票;
注3:提前兩天及以上在線上購買世園會門票,票價可打九折,但僅限于普通票.
某大家庭計劃在6月1日集體入園參觀游覽,通過計算發(fā)現(xiàn):若提前兩天線上購票所需費用為996元,而入園當(dāng)天購票所需費用為1080元,則該家庭中可以購買優(yōu)惠票的有______人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中 過點A作AE⊥DC,垂足為E,連接BE,F(xiàn)為BE上一點,且∠AFE=∠D.
(1)求證:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD=,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=kx﹣3與雙曲線的兩個交點為A,B,其中A(﹣1,m).
(1)求m的值及直線的表達式;
(2)若點M為x軸上一個動點,且△AMB為直角三角形,直接寫出滿足條件的點M的個數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,對于線段MN的“三等分變換”,給出如下定義:如圖1,點P,Q為線段MN的三等分點,即MP=PQ=QN,將線段PM以點P為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)90°得到PM′,將線段QN以點Q為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)90°得到QN′,則稱線段MN進行了三等分變換,其中M′,N′記為點M,N三等分變換后的對應(yīng)點.
例如:如圖2,線段MN,點M的坐標為(1,5),點N的坐標為(1,2),則點P的坐標為(1,4),點Q的坐標為(1,3),那么線段MN三等分變換后,可得:M′的坐標為(2,4),點N′的坐標為(0,3).
(1)若點P的坐標為(2,0),點Q的坐標為(4,0),直接寫出點M′與點N′的坐標;
(2)若點Q的坐標是(0,﹣),點P在x軸正半軸上,點N′在第二象限.當(dāng)線段PQ的長度為符合條件的最小整數(shù)時,求OP的長;
(3)若點Q的坐標為(0,0),點M′的坐標為(﹣3,﹣3),直接寫出點P與點N的坐標;
(4)點P是以原點O為圓心,1為半徑的圓上的一個定點,點P的坐標為(,)當(dāng)點N′在圓O內(nèi)部或圓上時,求線段PQ的取值范圍及PQ取最大值時點M′的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場甲、乙、丙三名業(yè)務(wù)員2018年前5個月的銷售額(單位:萬元)如下表:
月份 銷售額 人員 | 第1月 | 第2月 | 第3月 | 第4月 | 第5月 |
甲 | 6 | 9 | 10 | 8 | 8 |
乙 | 5 | 7 | 8 | 9 | 9 |
丙 | 5 | 9 | 10 | 5 | 11 |
(1)根據(jù)上表中的數(shù)據(jù),將下表補充完整:
統(tǒng)計值 數(shù)值 人員 | 平均數(shù)(萬元) | 眾數(shù)(萬元) | 中位數(shù)(萬元) | 方差 |
甲 | 8 | 8 | 1.76 | |
乙 | 7.6 | 8 | 2.24 | |
丙 | 8 | 5 |
(2)甲、乙、丙三名業(yè)務(wù)員都說自己的銷售業(yè)績好,你贊同誰的說法?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小帶和小路兩個人開車從A城出發(fā)勻速行駛至B城.在整個行駛過程中,小帶和小路兩人車離開A城的距離y(km)與行駛的時間t(h)之間的函數(shù)關(guān)系如圖所示.有下列結(jié)論;①A,B兩城相距300 km;②小路的車比小帶的車晚出發(fā)1 h,卻早到1 h;③小路的車出發(fā)后2.5 h追上小帶的車;④當(dāng)小帶和小路的車相距50 km時,t=或t=.其中正確的結(jié)論有( )
A. ①②③④B. ①②④
C. ①②D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的直徑CD=4,AB是⊙O的弦,AB⊥CD,垂足為M,且AB=2,則∠ACD等于( 。
A.30°B.60°C.30°或60°D.45°或60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果專賣店5月份銷售芒果,采購價為10元,上旬售價是15元,每天可賣出450.市場調(diào)查反映:如調(diào)整單價,每漲價1元,每天要少賣出50;每降價1元,每天可多賣出150.調(diào)整價格時也要兼顧顧客利益。
(1)若專賣店5月中旬每天獲得毛利2400元,試求出是如何確定售價的.
(2)請你幫老板算一算,5月下旬如何確定售價每天獲得毛利最大,并求出最大毛利.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com