【題目】如圖ABCDEF,下列條件中①∠B=E=90°,AC=DF;②∠B=E,AB=DE,AC=DF;③在RtABCRtDEF中,BC=EF,AC=DF;④∠A=D,∠B=E,∠C=F;⑤∠A=D,BC=EF,∠C=F,能證明ABC≌△DEF的是(

A.B.③⑤C.①②③⑤D.①②③④⑤

【答案】A

【解析】

根據(jù)全等三角形的判定定理(SASASA,AAS,SSS)逐個判斷即可.

解:①∠B=E=90°,AC=DF;兩三角形只有兩個相等的條件,不符合全等三角形的判定定理,不能推出兩三角形全等,故本選項(xiàng)錯誤;

②∠B=E,AB=DE,AC=DF中∠B=E不是夾角,不能判定兩三角形全等,故本選項(xiàng)錯誤;

③在RtABCRtDEF中,BC=EF,AC=DF,可以用HL判定兩個三角形全等;

④∠A=D,∠B=E,∠C=F,三角對應(yīng)相等,不符合全等三角形的判定定理,不能推出兩三角形全等,故本選項(xiàng)錯誤;

⑤∠A=D,BC=EF,∠C=F,可以用AAS判定兩個三角形全等;

故可以判定兩個三角形全等的是:③

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點(diǎn)D在BC上,BD=DC,過點(diǎn)D作DE⊥AC,垂足為E,⊙O經(jīng)過A,B,D三點(diǎn).

(1)求證:AB是⊙O的直徑;

(2)判斷DE與⊙O的位置關(guān)系,并加以證明;

(3)若⊙O的半徑為3,∠BAC=60°,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察推理:如圖1,ABC中,∠ACB=90°AC=BC,直線l過點(diǎn)C,點(diǎn)AB在直線l同側(cè),BDl,AEl,垂足分別為D、E

1)求證:AEC≌△CDB

2)類比探究:如圖2,RtABC中,∠ACB=90°AC=6,將斜邊AB繞點(diǎn)A逆時針旋轉(zhuǎn)90°AB,連接B′C,求AB′C的面積;

3)拓展提升:如圖3,∠E=60°,EC=EB=4cm,點(diǎn)OBC上,且OC=3cm,動點(diǎn)P從點(diǎn)E沿射線EC2cm/s速度運(yùn)動,連結(jié)OP,將線段OP繞點(diǎn)O逆時針旋轉(zhuǎn)120°得到線段OF.要使點(diǎn)F恰好落在射線EB上,求點(diǎn)P運(yùn)動的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果一條拋物線y=ax2+bx+c(a≠0)與x軸有兩個交點(diǎn),那么以該拋物線的頂點(diǎn)和這兩個交點(diǎn)為頂點(diǎn)的三角形稱為這條拋物線的直觀三角形”.

(1)拋物線y=x2直觀三角形   

A.等腰三角形 B.等邊三角形 C.直角三角形 D.等腰直角三角形

(2)若拋物線y=ax2+2ax﹣3a直觀三角形是直角三角形,求a的值;

(3)如圖,面積為12的矩形ABCO的對角線OBx軸的正半軸上,ACOB相交于點(diǎn)E,若ABE是拋物線y=ax2+bx+c直觀三角形,求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C,E,F(xiàn),B在同一直線上,點(diǎn)A,DBC異側(cè),AB∥CD,AE=DF,∠A=∠D.

(1)求證:AB=CD;

(2)若AB=CF,∠B=30°,求∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠ABC,①BD平分∠ABC;②DE=DF;③∠ABC+EDF=180°,以①②③中的兩個作為條件,另一個作為結(jié)論,可以使結(jié)論成立的有幾個(

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于一個函數(shù),如果它的自變量 x 與函數(shù)值 y 滿足:當(dāng)1≤x≤1 時,1≤y≤1,則稱這個函數(shù)為“閉 函數(shù)”.例如:y=x,y=x 均是“閉函數(shù)”. 已知 y ax2 bx c(a0) 是“閉函數(shù)”,且拋物線經(jīng)過點(diǎn) A(1,1)和點(diǎn) B(1,1),則 a 的取值范圍是______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一、二兩班共有95人,他們的體育達(dá)標(biāo)率為60%,如果一班的體育達(dá)標(biāo)率為40%,二班達(dá)標(biāo)率為78%,求一、二兩班的人數(shù)各是多少?若設(shè)一、二兩班的學(xué)生人數(shù)各有x人、y人.

(1)填寫表:

表格依次填__________,__________,_____

(2)列出二元一次方程組:_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,AE、BF是角平分線,它們相交于點(diǎn)O,AD是高,∠BAC=80°,∠C=54°,求∠DAC、∠BOA的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案