【題目】如圖,AB是⊙O的直徑,CD是⊙O的一條弦,且CDAB于點E

1)求證:∠BCO=∠D;

2)若CD6,AE2,求⊙O的半徑.

【答案】1)見解析;(2r

【解析】

1)根據(jù)等腰三角形的性質可得∠BCO=∠B,根據(jù)圓周角定理可得∠B=D,即可得∠BCO=∠D;(2)由垂徑定理可得CE=CD=3,設⊙O的半徑為r,可得OE=r-2,利用勾股定理列方程求出r值即可.

1)∵OCOB,

∴∠BCO=∠B

∵∠B和∠D都是所對的圓周角,

∴∠B=∠D,

∴∠BCO=∠D

2)∵AB是直徑,CDAB,

CE=CD=3,

OCOAr,則OEr2

∵∠CEO90°,

OC2CE2+OE2,

r232+r22,

r

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標平面xOy內(nèi),點A6,0)、C(﹣40),過點A作直線AB,交y軸的正半軸于點B,且AB10,點P是直線AB上的一個動點.

1)求點B的坐標和直線AB的表達式;

2)若以A、P、C為頂點的三角形與AOB相似,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】湘潭市繼2017年成功創(chuàng)建全國文明城市之后,又準備爭創(chuàng)全國衛(wèi)生城市.某小區(qū)積極響應,決定在小區(qū)內(nèi)安裝垃圾分類的溫馨提示牌和垃圾箱,若購買2個溫馨提示牌和3個垃圾箱共需550元,且垃圾箱的單價是溫馨提示牌單價的3倍.

(1)求溫馨提示牌和垃圾箱的單價各是多少元?

(2)該小區(qū)至少需要安放48個垃圾箱,如果購買溫馨提示牌和垃圾箱共100個,且費用不超過10000元,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,大圓的弦ABAC分別切小圓于點M、N

1)求證:AB=AC;

2AB8,求圓環(huán)的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點ABO上,直線ACO的切線,ODOB,連接ABOC于點D

求證:AC=CD

AC=2,AO=,求OD的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知拋物線y=﹣x2+2mxm2+m

1)求拋物線的對稱軸(用含m的式子表示);

2)如果該拋物線的頂點在直線y2x4上,求m的值.

3)點A的坐標為(﹣2,﹣8),點A關于點(0,﹣9)的對稱點為B點.

①寫出點B坐標.

②若該拋物線與線段AB有公共點,結合函數(shù)圖象,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,RtABMRtADN的斜邊分別為正方形的邊ABAD,其中AMAN,線段MN與線段AD相交于點T,若AD3AT,則tanABM  ;

2)如圖2,在菱形ABCD中,CD6,∠ADC60°,菱形形內(nèi)部有一動點P,滿足SPABS菱形ABCD,則點PA、B兩點的距離之和PA+PB的最小值為 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD內(nèi)接于⊙O,連接AC、BD,2BDC+ADB180°

1)如圖1,求證:ACBC;

2)如圖2,E為⊙O上一點, ,FAC上一點,DEBF相交于點T,連接AT,若∠BFC=∠BDC+ABD,求證:AT平分∠DAB

3)在(2)的條件下,DTTEAD8,BD12,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:r如圖,在梯形ABCD中,AD∥BC,∠BCD=90°.對角線AC、BD相交于點E。且AC⊥BD。(1)求證:CD=BC·AD;(2)點F是邊BC上一點,連接AF,與BD相交于點G,如果∠BAF=∠DBF,求證:。

查看答案和解析>>

同步練習冊答案