【題目】(1)如圖1,Rt△ABM和Rt△ADN的斜邊分別為正方形的邊AB和AD,其中AM=AN,線段MN與線段AD相交于點T,若AD=3AT,則tan∠ABM= ;
(2)如圖2,在菱形ABCD中,CD=6,∠ADC=60°,菱形形內(nèi)部有一動點P,滿足S△PAB=S菱形ABCD,則點P到A、B兩點的距離之和PA+PB的最小值為 .
【答案】(1)tan∠ABM=;(2)PA+PB的最小值為2.
【解析】
(1)先利用HL證明Rt△ABM≌Rt△AND,再證明△DNT∽△AMT,可得=,由AD=3AT,推出=,在Rt△ABM中,tan∠ABM===;
(2) 首先由S△PAB=S菱形ABCD,,得出動點P在與AB平行且與AB的距離是2的直線l上,作A關(guān)于直線l的對稱點A′,連接AA′,連接BA′,則BA′的長就是所求的最短距離.然后在直角三角形ABA′中,由勾股定理求得BA′的值,即PA+PB的最小值.
(1)∵AD=AB,AM=AN,∠AMB=∠AND=90°,
∴Rt△ABM≌Rt△AND(HL).
∴∠DAN=∠BAM,DN=BM,
∵∠BAM+∠DAM=90°;∠DAN+∠ADN=90°,
∴∠DAM=∠ADN,
∴ND∥AM,
∴△DNT∽△AMT,
∴=,
∵AT=AD,
∴=,
在Rt△ABM中,tan∠ABM===;
故答案為:;
(2)∵四邊形ABCD是菱形,
∴AB=CD=6,
連接AC,BD交于O,
∴AC⊥BD,
∵∠ADC=60°,
∴∠CDO=30°,
∴DO=3,OC=3,
∴BD=6,AC=6,
∴S菱形ABCD=×6×6=18;
設(shè)△ABP中AB邊上的高是h,
∵S△PAB=S菱形ABCD,
∴ABh=×18=6,
∴h=2,
∴動點P在與AB平行且與AB的距離是2的直線l上,如圖,作A關(guān)于直線l的對稱點A′,連接AA′,連接BA′,則BA′的長就是所求的最短距離.
在Rt△ABE中,∵AB=6,AA′=4,
∴BA′==2,
即PA+PB的最小值為2.
故答案為:2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利達(dá)經(jīng)銷店為某工廠代銷一種建筑材料(這里的代銷是指廠家先免費提供貨源,待貨物售出后再進(jìn)行結(jié)算,未售出的由廠家負(fù)責(zé)處理).當(dāng)每噸售價為260元時,月銷售量為45噸.該經(jīng)銷店為提高經(jīng)營利潤,準(zhǔn)備采取降價的方式進(jìn)行促銷.經(jīng)市場調(diào)查發(fā)現(xiàn):當(dāng)每噸售價每下降10元時,月銷售量就會增加7.5噸.綜合考慮各種因素,每售出一噸建筑材料共需支付廠家及其它費用100元.
(1)當(dāng)每噸售價是240元時,計算此時的月銷售量;
(2)在遵循“薄利多銷”的原則下,問每噸材料售價為多少時,該經(jīng)銷店的月利潤為9000元?
(3)小靜說:“當(dāng)月利潤最大時,月銷售額也最大.”你認(rèn)為對嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點A是y軸上一點,其坐標(biāo)為(0,6),點B在x軸的正半軸上.點P,Q均在線段AB上,點P的橫坐標(biāo)為m,點Q的橫坐標(biāo)大于m,在△PQM中,若PM∥x軸,QM∥y軸,則稱△PQM為點P,Q的“肩三角形.
(1)若點B坐標(biāo)為(4,0),且m=2,則點P,B的“肩三角形”的面積為 ;
(2)當(dāng)點P,Q的“肩三角形”是等腰三角形時,求點B的坐標(biāo);
(3)在(2)的條件下,作過O,P,B三點的拋物線y=ax2+bx+c
①若M點必為拋物線上一點,求點P,Q的“肩三角形”面積S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍.
②當(dāng)點P,Q的“肩三角形”面積為3,且拋物線y=ax2+bx+c與點P,Q的“肩三角形”恰有兩個交點時,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,CD是⊙O的一條弦,且CD⊥AB于點E.
(1)求證:∠BCO=∠D;
(2)若CD=6,AE=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是角平分錢,點E在AC上,且∠EAD=∠ADE.
(1)求證:△DCE∽△BCA;
(2)若AB=3,AC=4.求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,函數(shù)y=﹣x2+bx+c的部分圖象與x軸、y軸的交點分別為A(1,0),B(0,3),對稱軸是x=﹣1,在下列結(jié)論中,正確的是( 。
A.頂點坐標(biāo)為(﹣1,3)
B.拋物線與x軸的另一個交點是(﹣4,0)
C.當(dāng)x<0時,y隨x的增大而增大
D.b+c=1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘉淇同學(xué)利用業(yè)余時間進(jìn)行射擊訓(xùn)練,一共射擊7次,經(jīng)過統(tǒng)計,制成如圖12所示的折線統(tǒng)計圖.
(1)這組成績的眾數(shù)是 ;
(2)求這組成績的方差;
(3)若嘉淇再射擊一次(成績?yōu)檎麛?shù)環(huán)),得到這8次射擊成績的中位數(shù)恰好就是原來7次成績的中位數(shù),求第8次的射擊成績的最大環(huán)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l1∥l2∥l3∥l4,相鄰兩條平行線間的距離都是1,正方形ABCD的四個頂點分別在四條直線上,則正方形ABCD的面積為
A. B. 5C. 3D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com