【題目】如圖,BC是⊙O的直徑,D、E是⊙O上的兩點(diǎn),且弧CD=DE,連接EB、DO.
(1)求證:EB∥DO;
(2)連接EC,在∠CEB的外部作∠BEA=∠C,直線EA交CB的延長(zhǎng)線于A,求證:直線EA是⊙O的切線;
(3)若EA=2,AB=1,求⊙O的半徑長(zhǎng).
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)⊙O半徑長(zhǎng)為.
【解析】
(1)由垂徑定理得:OD⊥EC;由圓周角定理,得:BE⊥EC;由此可證得EB∥DO;
(2)連接OE,證得∠OEA=90°即可;
(3)根據(jù)AE2=ABAC,即可求得AC長(zhǎng),進(jìn)而求得⊙O的半徑長(zhǎng).
(1)∵弧CD=DE,
∴OD⊥EC,
∵BC是⊙O的直徑,
∴∠BEC=90°,
∴BE⊥EC,
∴EB∥DO;
(2)連接OE,
∵OC=OE,
∴∠C=∠OEC,
∵∠BEA=∠C,
∴∠BEA=∠OEC,
∵∠CEO+∠BEO=90°,
∴∠BEA+∠BEO=90°,即∠OEA=90°,
∴直線EA是⊙O的切線;
(3)∵AE是切線,AC是割線,
∴由切割線定理知:AE2=ABAC,
∴AC=AE2÷AB=4,
∴BC=AC﹣AB=3,
∴⊙O半徑長(zhǎng)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(a≠0)經(jīng)過(guò)A(﹣1,0)、B(3,0)、C(0,﹣3)三點(diǎn),直線l是拋物線的對(duì)稱軸.
(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)P到點(diǎn)A、點(diǎn)B的距離之和最短時(shí),求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M也是直線l上的動(dòng)點(diǎn),且△MAC為等腰三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)如圖1,點(diǎn)O是正方形ABCD兩對(duì)角線的交點(diǎn),分別延長(zhǎng)OD到點(diǎn)G,OC到點(diǎn)E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE.
(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α角(0°<α<360°)得到正方形OE′F′G′,如圖2.
①在旋轉(zhuǎn)過(guò)程中,當(dāng)∠OAG′是直角時(shí),求α的度數(shù);
②若正方形ABCD的邊長(zhǎng)為1,在旋轉(zhuǎn)過(guò)程中,求AF′長(zhǎng)的最大值和此時(shí)α的度數(shù),直接寫出結(jié)果不必說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:到一個(gè)三角形三個(gè)頂點(diǎn)的距離相等的點(diǎn)叫做該三角形的外心.
(1)如圖①,小海同學(xué)在作△ABC的外心時(shí),只作出兩邊BC,AC的垂直平分線得到交點(diǎn)O,就認(rèn)定點(diǎn)O是△ABC的外心,你覺(jué)得有道理嗎?為什么?
(2)如圖②,在等邊三角形ABC的三邊上,分別取點(diǎn)D,E,F,使AD=BE=CF,連接DE,EF,DF,得到△DEF.若點(diǎn)O為△ABC的外心,求證:點(diǎn)O也是△DEF的外心.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:“直角三角形如果有一個(gè)角等于 ,那么這個(gè)角所對(duì)的邊等于斜邊的一半”,即“在中,,則”.利用以上知識(shí)解決下列問(wèn)題:如圖,已知是的平分線上一點(diǎn).
(1)若與射線分別相交于點(diǎn),且.
①如圖1,當(dāng)時(shí),求證: ;
②當(dāng)時(shí),求的值.
(2)若與射線的反向延長(zhǎng)線、射線分別相交于點(diǎn),且,請(qǐng)你直接寫出線段三者之間的等量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:C是以AB為直徑的半圓O上一點(diǎn),CH⊥AB于點(diǎn)H,直線AC與過(guò)B點(diǎn)的切線相交于點(diǎn)D,E為CH中點(diǎn),連接AE并延長(zhǎng)交BD于點(diǎn)F,直線CF交直線AB于點(diǎn)G.
(1)求證:點(diǎn)F是BD中點(diǎn);
(2)求證:CG是⊙O的切線;
(3)若FB=FE=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙M交x軸于B、C兩點(diǎn),交y軸于A,點(diǎn)M的縱坐標(biāo)為2.B(﹣3,O),C(,O).
(1)求⊙M的半徑;
(2)若CE⊥AB于H,交y軸于F,求證:EH=FH.
(3)在(2)的條件下求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A、B是反比例函數(shù)y=(k≠0)圖象上的兩點(diǎn),延長(zhǎng)線段AB交y 軸于點(diǎn)C,且點(diǎn)B為線段AC中點(diǎn),過(guò)點(diǎn)A作AD⊥x軸子點(diǎn)D,點(diǎn)E 為線段OD的三等分點(diǎn),且OE<DE.連接AE、BE,若S△ABE=7,則k的值為( )
A. ﹣12 B. ﹣10 C. ﹣9 D. ﹣6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是邊長(zhǎng)為2的正方形,以點(diǎn)A,B,C為圓心作圓,分別交BA,CB,DC的延長(zhǎng)線于點(diǎn)E,F(xiàn),G.
(1)求點(diǎn)D沿三條圓弧運(yùn)動(dòng)到點(diǎn)G所經(jīng)過(guò)的路線長(zhǎng);
(2)判斷線段GB與DF的長(zhǎng)度關(guān)系,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com