【題目】小穎“綜合與實踐”小組學(xué)習(xí)了三角函數(shù)后,開展了測量本校旗桿高度的實踐活動.他們制訂了測量方案,并利用課余時間完成了實地測量.他們在該旗桿底部所在的平地上,選取兩個不同測點(diǎn),分別測量了該旗桿頂端的仰角以及這兩個測點(diǎn)之間的距離.為了減小測量誤差,小組在測量仰角的度數(shù)以及兩個測點(diǎn)之間的距離時,都分別測量了兩次并取它們的平均值作為測量結(jié)果,如表是不完整測量數(shù)據(jù).
課題 | 測量旗桿的高度 | |||
成員 | 組長:小穎,組員:小明,小剛,小英 | |||
測量工具 | 測量角度的儀器,皮尺等 | |||
測量示意圖 | 說明: 線段GH表示學(xué)校旗桿,測量角度的儀器的高度AC=BD=1.62m,測點(diǎn)A,B與H在同一水平直線上,A,B之間的距離可以直接測得,且點(diǎn)G,H,A,B,C,D都在同一豎直平面內(nèi),點(diǎn)C,D,E在同一條直線上,點(diǎn)E在GH上. | |||
測量數(shù)據(jù) | 測量項目 | 第一次 | 第二次 | 平均值 |
∠GCE的度數(shù) | 30.6° | 31.4° | 31° | |
∠GDE的度數(shù) | 36.8° | 37.2° | 37° | |
A,B之間的距離 | 10.1m | 10.5m | m | |
… | … |
(1)任務(wù)一:完成表格中兩次測點(diǎn)A,B之間的距離的平均值.
(2)任務(wù)二:根據(jù)以上測量結(jié)果,請你幫助該“綜合與實踐”小組求出學(xué)校旗桿GH的高度.(精確到0.1m)(參考數(shù)據(jù):sin31°≈0.51,cos31°≈0.86,tan31°≈0.60,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
【答案】(1)10.3;(2)32.5m
【解析】
(1)由平均數(shù)的計算方法可求解;
(2)由銳角三角函數(shù)可求DE=,CE=,由CD=CE﹣DE,列出方程可求解.
解:(1)任務(wù)一:兩次測點(diǎn)A,B之間的距離的平均值==10.3m,
故答案為10.3;
(2)由題意可得四邊形EDBH和四邊形CDBA是矩形,
∴CD=AB=10.3m,EH=BD=16.2m,
在Rt△GED中,tan∠GDE=,
∴DE=,
同理:CE=,
∴CD=CE﹣DE,
∴CD=﹣,
又∵CD=10.3m,∠GCE=31°,∠GDE=37°,tan31°≈0.60,tan37°≈0.75,
∴,
∴GE=30.90,
∴GH=GE+EH=30.90+1.62≈32.5(m),
答:學(xué)校旗桿GH的高度約為32.5m.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在趣味運(yùn)動會“定點(diǎn)投籃”項目中,我校七年級八個班的投籃成績單位:個分別為:24,20,19,20,22,23,20,則這組數(shù)據(jù)中的眾數(shù)和中位數(shù)分別是
A. 22個、20個 B. 22個、21個 C. 20個、21個 D. 20個、22個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】墾利區(qū)在進(jìn)行“五城同創(chuàng)”的過程中,決定購買A,B兩種樹對某路段進(jìn)行綠化改造,若購買A種樹1棵,B種樹3棵,需要2250元;購買A種樹2棵,B種樹5棵,需要3900元.
(1)求購買A,B兩種樹每棵各需多少元?
(2)考慮到綠化效果,購進(jìn)A種樹不能少于48棵,且用于購買這兩種樹的資金不低于52500元.若購進(jìn)這兩種樹共100棵.問有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形的對角線、交于點(diǎn),分別過點(diǎn)、作,,連接交于點(diǎn).
(1)求證:;
(2)當(dāng)時,判斷四邊形的形狀?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=9,AD=6,點(diǎn)O為對角線AC的中點(diǎn),點(diǎn)E在DC的延長線上且CE=1.5,連接OE,過點(diǎn)O作OF⊥OE交CB延長線于點(diǎn)F,連接FE并延長交AC的延長線于點(diǎn)G,則=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中(如圖),已知點(diǎn)A在x軸的正半軸上,且與原點(diǎn)的距離為3,拋物線y=ax2﹣4ax+3(a≠0)經(jīng)過點(diǎn)A,其頂點(diǎn)為C,直線y=1與y軸交于點(diǎn)B,與拋物線交于點(diǎn)D(在其對稱軸右側(cè)),聯(lián)結(jié)BC、CD.
(1)求拋物線的表達(dá)式及點(diǎn)C的坐標(biāo);
(2)點(diǎn)P是y軸的負(fù)半軸上的一點(diǎn),如果△PBC與△BCD相似,且相似比不為1,求點(diǎn)P的坐標(biāo);
(3)將∠CBD繞著點(diǎn)B逆時針方向旋轉(zhuǎn),使射線BC經(jīng)過點(diǎn)A,另一邊與拋物線交于點(diǎn)E(點(diǎn)E在對稱軸的右側(cè)),求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)在第一象限的圖象交于和B兩點(diǎn),與軸交于點(diǎn)C.
(1)求出反比例函數(shù)的解析式;
(2)若點(diǎn)P在軸上,且△APC的面積為5,求點(diǎn)P的坐標(biāo).
(3)根據(jù)圖象,直接寫出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了參加西部博覽會,資陽市計劃印制一批宣傳冊.該宣傳冊每本共10頁,由A、B兩種彩頁構(gòu)成.已知A種彩頁制版費(fèi)300元/張,B種彩頁制版費(fèi)200元/張,共計2400元.(注:彩頁制版費(fèi)與印數(shù)無關(guān))
(1)每本宣傳冊A、B兩種彩頁各有多少張?
(2)據(jù)了解,A種彩頁印刷費(fèi)2.5元/張,B種彩頁印刷費(fèi)1.5元/張,這批宣傳冊的制版費(fèi)與印刷費(fèi)的和不超過30900元.如果按到資陽展臺處的參觀者人手一冊發(fā)放宣傳冊,預(yù)計最多能發(fā)給多少位參觀者?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 經(jīng)過點(diǎn),與軸相交于,兩點(diǎn),
(1)拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)在拋物線的對稱軸上,且位于軸的上方,將沿沿直線翻折得到,若點(diǎn)恰好落在拋物線的對稱軸上,求點(diǎn)和點(diǎn)的坐標(biāo);
(3)設(shè)是拋物線上位于對稱軸右側(cè)的一點(diǎn),點(diǎn)在拋物線的對稱軸上,當(dāng)為等邊三角形時,求直線的函數(shù)表達(dá)式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com