【題目】在Rt△ABC中,斜邊AB=5厘米,BC=a厘米,AC=b厘米,a>b,且a、b是方程x2﹣(m﹣1)x+m+4=0的兩根,Rt△ABC的面積為平方厘米.

【答案】6
【解析】解:∵斜邊AB為5的Rt△ABC中,∠C=90°,兩條直角邊a、b, ∴a2+b2=25,
又∵a2+b2=(a+b)2﹣2ab,
∴(a+b)2﹣2ab=25,①
∵a、b是關(guān)于x的方程x2﹣(m﹣1)x+m+4=0的兩個實數(shù)根,
∴a+b=m﹣1,②
ab=m+4,③
由①②③,解得
m=﹣4,或m=8;
當(dāng)m=﹣4時,ab=0,
∴a=0或b=0,(不合題意)
∴m=8;
則Rt△ABC的面積為 ab= ×(8+4)=6,
所以答案是:6.
【考點精析】認(rèn)真審題,首先需要了解根與系數(shù)的關(guān)系(一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項系數(shù)除以二次項系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項除以二次項系數(shù)所得的商),還要掌握勾股定理的概念(直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點B、C、D都在半徑為4的⊙O上,過點C作AC∥BD交OB的延長線于點A,連接CD,已知∠CDB=∠OBD=30°.
(1)求證:AC是⊙O的切線;
(2)求弦BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國中東部地區(qū)霧霾天氣趨于嚴(yán)重,環(huán)境治理已刻不容緩.我市某電器商場根據(jù)民眾健康需要,代理銷售某種家用空氣凈化器,其進(jìn)價是200元/臺.經(jīng)過市場銷售后發(fā)現(xiàn):在一個月內(nèi),當(dāng)售價是400元/臺時,可售出200臺,且售價每降低10元,就可多售出50臺.若供貨商規(guī)定這種空氣凈化器售價不能低于300元/臺,代理銷售商每月要完成不低于450臺的銷售任務(wù).
(1)試確定月銷售量y(臺)與售價x(元/臺)之間的函數(shù)關(guān)系式;并求出自變量x的取值范圍;
(2)當(dāng)售價x(元/臺)定為多少時,商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:|1﹣2sin45°|﹣ +( 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年以來,國務(wù)院連續(xù)發(fā)布了《關(guān)于加快構(gòu)建大眾創(chuàng)業(yè)萬眾創(chuàng)新支撐平臺的指導(dǎo)意見》等一系列支持性政策,各地政府高度重視、積極響應(yīng),中國掀起了大眾創(chuàng)業(yè)萬眾創(chuàng)新的新浪潮.某創(chuàng)新公司生產(chǎn)營銷A、B兩種新產(chǎn)品,根據(jù)市場調(diào)研,發(fā)現(xiàn)如下信息: 信息1:銷售A種產(chǎn)品所獲利潤y(萬元)與所售產(chǎn)品x(噸)之間存在二次函數(shù)關(guān)系y=ax2+bx,當(dāng)x=1時,y=7;當(dāng)x=2時,y=12.
信息2:銷售B種產(chǎn)品所獲利潤y(萬元)與所售產(chǎn)品x(噸)之間存在正比例函數(shù)關(guān)系y=2x.
根據(jù)以上信息,解答下列問題:
(1)求a,b的值;
(2)該公司準(zhǔn)備生產(chǎn)營銷A、B兩種產(chǎn)品共10噸,請設(shè)計一個生產(chǎn)方案,使銷售A、B兩種產(chǎn)品獲得的利潤之和最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】哈市某中學(xué)為了解學(xué)生的課余生活情況,學(xué)校決定圍繞“在欣賞音樂、讀課外書、體育運(yùn)動.其他活動中,你最喜歡的課余生活種類是什么?(只寫一類)”的問題,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,并將調(diào)查問卷適當(dāng)整理后繪制成如圖所示的不完整的條形統(tǒng)計圖,其中最喜歡欣賞音樂的學(xué)生占被抽取人數(shù)的12%,請你根據(jù)以上信息解答下列問題:
(1)在這次調(diào)查中,一共抽取了多少名學(xué)生?
(2)最喜歡讀課外書的學(xué)生占被抽取人數(shù)的百分?jǐn)?shù)是多少?
(3)如果全校有1000名學(xué)生,請你估計全校最喜歡體育運(yùn)動的學(xué)生約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算下列各題:
(1)﹣|﹣1|+ cos30°﹣(﹣ 2+(π﹣3.14)0
(2)(x﹣y)2﹣(x﹣2y)(x+y)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=4.動點P從點A出發(fā)沿AC向終點C運(yùn)動,同時動點Q從點B出發(fā)沿BA向點A運(yùn)動,到達(dá)A點后立刻以原來的速度沿AB返回.點P,Q運(yùn)動速度均為每秒1個單位長度,當(dāng)點P到達(dá)點C時停止運(yùn)動,點Q也同時停止.連結(jié)PQ,設(shè)運(yùn)動時間為t(t>0)秒.

(1)在點Q從B到A的運(yùn)動過程中,
①當(dāng)t=時,PQ⊥AC;
(2)②求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)伴隨著P、Q兩點的運(yùn)動,線段PQ的垂直平分線為l.
①當(dāng)l經(jīng)過點A時,射線QP交AD于點E,求AE的長;
②當(dāng)l經(jīng)過點B時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y= x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P是直線AC下方拋物線上的動點.

(1)求拋物線的解析式;
(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當(dāng)四邊形AECP的面積最大時,求點P的坐標(biāo);
(3)當(dāng)點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案