【題目】閱讀探索
知識累計
解方程組
解:設(shè)a﹣1=x,b+2=y,原方程組可變?yōu)?/span>
解方程組得:即所以此種解方程組的方法叫換元法.
(1)拓展提高
運用上述方法解下列方程組:
(2)能力運用
已知關(guān)于x,y的方程組的解為,直接寫出關(guān)于m、n的方程組的解為_____________.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,AD=BC,AB=CD,AD>AB,將長方形ABCD折疊,使點C與點A重合,折痕為MN,連接CN.若△CDN的面積與△CMN的面積比為1:3,
(1)求證:DN=BM;(2)求ND:NA的值;(3)求MN2:BM2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,BE∥GF,∠1=∠3,∠DBC=70°,求∠EDB的大。
閱讀下面的解答過程,并填空(理由或數(shù)學(xué)式)
解:∵BE∥GF(已知)
∴∠2=∠3( )
∵∠1=∠3( )
∴∠1=( )( )
∴DE∥( )( )
∴∠EDB+∠DBC=180°( )
∴∠EDB=180°﹣∠DBC(等式性質(zhì))
∵∠DBC=( )(已知)
∴∠EDB=180°﹣70°=110°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,所有正方形的中心均在坐標(biāo)原點,且各邊與x軸或y軸平行,從內(nèi)到外,它們的邊長依次為2,4,6,8,…頂點依次用A1,A2,A3,A4表示,則頂點A2018的坐標(biāo)是( 。
A. (504,﹣504) B. (﹣504,504) C. (505,﹣505) D. (﹣505,505)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為籌備校慶活動,準(zhǔn)備印制一批校慶紀(jì)念冊,該紀(jì)念冊每冊需要10張8K大小的紙,其中4張為彩色頁,6張為黑白頁.印制該紀(jì)念冊的總費用由制版費和印刷費兩部分組成,制版費與印數(shù)無關(guān),價格為:彩色頁300元/張,黑白頁50元/張;印刷費與印數(shù)的關(guān)系見表.
印數(shù)a。▎挝唬呵裕 | 1≤a<5 | 5≤a<10 |
彩色。▎挝唬涸/張) | 2.2 | 2.0 |
黑白(單位:元/張) | 0.7 | 0.6 |
(1)直接寫出印制這批紀(jì)念冊的制版費為多少元;
(2)若印制6千冊,那么共需多少費用?
(3)如印制x(1≤x<10)千冊,所需費用為y元,請寫出y與x之間的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給下面命題的說理過程填寫依據(jù).
已知:如圖,直線AB,CD相交于點O,EO⊥CD,垂足為O,OF平分∠BOD,對∠EOF=∠BOC說明理由.
理由:因為∠AOC=∠BOD( ),
∠BOF=∠BOD( ),
所以∠BOF=∠AOC( ).
因為∠AOC=180°-∠BOC( ),
所以∠BOF=90°-∠BOC.
因為EO⊥CD( ),
所以∠COE=90°( )
因為∠BOE+∠COE=∠BOC( ),
所以∠BOE=∠BOC-∠COE.
所以∠BOE=∠BOC-90°( )
因為∠EOF=∠BOE+∠BOF( )
所以∠EOF=(∠BOC-90°)+(90°∠BOC)( )
所以∠EOF=∠BOC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:四邊形ABCD中,AD∥BC,AD=AB=CD,∠BAD=120°,點E是射線CD上的一個動點(與C、D不重合),將△ADE繞點A順時針旋轉(zhuǎn)120°后,得到△ABE',連接EE'.
(1)如圖1,∠AEE'= °;
(2)如圖2,如果將直線AE繞點A順時針旋轉(zhuǎn)30°后交直線BC于點F,過點E作EM∥AD交直線AF于點M,寫出線段DE、BF、ME之間的數(shù)量關(guān)系;
(3)如圖3,在(2)的條件下,如果CE=2,AE=,求ME的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從①∠1=∠2;②∠C=∠D;③∠A=∠F三個條件中選出兩個作為已知條件,另一個作為結(jié)論所組成的命題中,正確命題的個數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com