【題目】補(bǔ)全解答過程:
已知:如圖,直線AB∥CD,直線EF與直線AB、CD分別交于點(diǎn)G、H,GM平分∠FGB,∠3=60°,求∠1的度數(shù)。
解:∵EF與CD交于點(diǎn)H(已知)
∴∠3=∠4(_______________)
∵∠3=60°(已知)
∴∠4=60°(______________)
∵AB∥CD,EF與AB、CD交于點(diǎn)G、H(已知)
∴∠4+∠FGB=180°(______________)
∴∠FGB=______°
∵GM平分∠FGB(已知)
∴∠1=_____°(______________)
【答案】對頂角相等;等量代換;兩直線平行,同旁內(nèi)角互補(bǔ);120;60;角平分線的定義.
【解析】
依據(jù)對頂角相等以及平行線的性質(zhì),即可得到∠4=60°,∠FGB=120°,再根據(jù)角平分線的定義,即可得出∠1=60°.
解:∵EF與CD交于點(diǎn)H,(已知)
∴∠3=∠4.(對頂角相等)
∵∠3=60°,(已知)
∴∠4=60°.(等量代換)
∵AB∥CD,EF與AB,CD交于點(diǎn)G,H,(已知)
∴∠4+∠FGB=180°.(兩直線平行,同旁內(nèi)角互補(bǔ))
∴∠FGB=120°.
∵GM平分∠FGB,(已知)
∴∠1=60°.(角平分線的定義)
故答案為:對頂角相等;等量代換;兩直線平行,同旁內(nèi)角互補(bǔ);120;60;角平分線的定義.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E為BC邊上一點(diǎn),且AB=AE.
(1)求證:△ABC≌△EAD;
(2)若∠B=65°,∠EAC=25°,求∠AED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD頂點(diǎn)A、B在x軸上,點(diǎn)D在y軸上,函數(shù)y= (x>0)的圖象經(jīng)過點(diǎn)C(2,3),直線AD交雙曲線于點(diǎn)E,并且EB⊥x軸,CD⊥y軸,EB與CD交于點(diǎn)F.
(1)若EB= OD,求點(diǎn)E的坐標(biāo);
(2)若四邊形ABCD為平行四邊形,求過A、D兩點(diǎn)的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE均為等腰直角三角形,∠BAC=∠DAE=90°,B、C、E三點(diǎn)共線,連接DC,點(diǎn)F為CD上的一點(diǎn),連接AF.
(1)若BE平分∠AED,求證:AC=EC;
(2)若∠DAF=∠AEC,求證:BE=2AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“珍重生命,注意安全!”同學(xué)們在上下學(xué)途中一定要注意騎車安全.小明騎單車上學(xué),當(dāng)他騎了一段時(shí),想起要買某本書,于是又折回到剛經(jīng)過的新華書店,買到書后繼續(xù)去學(xué)校,以下是他本次所用的時(shí)間與路程的關(guān)系示意圖.根據(jù)圖中提供的信息回答下列問題:
(1)小明家到學(xué)校的路程是多少米?
(2)小明在書店停留了多少分鐘?
(3)本次上學(xué)途中,小明一共行駛了多少米?一共用了多少分鐘?
(4)我們認(rèn)為騎單車的速度超過300米/分鐘就超越了安全限度.問:在整個(gè)上學(xué)的途中哪個(gè)時(shí)間段小明騎車速度最快,速度在安全限度內(nèi)嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分線BE交AC的延長線于點(diǎn)E,點(diǎn)F為AC延長線上的一點(diǎn),連接DF.
(1)求∠CBE的度數(shù);
(2)若∠F=25°,求證:BE∥DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小李購買了一套一居室,他準(zhǔn)備將房子的地面鋪上地磚,地面結(jié)構(gòu)如圖所示,根據(jù)圖中所給的數(shù)據(jù)單位:米,解答下列問題:
用含m,n的代數(shù)式表示地面的總面積S;
已知客廳面積是衛(wèi)生間面積的8倍,且衛(wèi)生間、臥室、廚房面積的和比客廳還少3平方米,如果鋪1平方米地磚的平均費(fèi)用為100元,那么小李鋪地磚的總費(fèi)用為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們已經(jīng)知道,通過計(jì)算幾何圖形的面積可以表示一些代數(shù)恒等式.例如圖1可以得到(a+b)2=a2+2ab+b2,基于此,請解答下列問題:
(1)根據(jù)如圖2,寫出一個(gè)代數(shù)恒等式: .
(2)利用(1)中得到的結(jié)論,解決下面的問題:若a+b+c=10,ab+ac+bc=35,則a2+b2+c2= .
(3)小明同學(xué)用如圖3中x張邊長為a的正方形,y張邊長為b的正方形,z張寬、長分別為a、b的長方形紙片拼出一個(gè)面積為(2a+b)(a+2b)長方形,則x+y+z= .
(4)兩個(gè)邊長分別為a、b、c的直角三角形和一個(gè)兩條直角邊都是c的直角三角形拼成如圖4.請你根據(jù)如圖中圖形的關(guān)系,寫出一個(gè)代數(shù)恒等式,并寫出推導(dǎo)過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD,AB=3,點(diǎn)E在線段AB上,AE=1連結(jié)DE,DE的垂直平分線交DE于點(diǎn)P,交DC的延長線于點(diǎn)Q,PQ交BC于點(diǎn)G,連結(jié)EQ,EQ交BC于點(diǎn)F,連結(jié)GE.
(1)求證:△ADE∽△PQD;
(2)求線段CQ的長;
(3)求∠EGB的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com