【題目】如圖,點(diǎn)A1,2)在反比例函數(shù)上,B為反比例函數(shù)圖象上一點(diǎn),不與A重合,當(dāng)以OB為直徑的圓經(jīng)過(guò)A點(diǎn),點(diǎn)B的坐標(biāo)為___________

【答案】4,0.5

【解析】

將點(diǎn)A12)代入,求得反比例函數(shù)解析式為,設(shè)點(diǎn)B ,連接AB,過(guò)點(diǎn)Ax軸的平行線,交y軸于點(diǎn)C,過(guò)點(diǎn)By軸的平行線,交直線AC于點(diǎn)D,則∠OCA=D=90°,根據(jù)OB為圓的直徑,∠OAB=90°,容易得到AOC∽△BAD,所以有,即: ,化簡(jiǎn)求值即可.

解:將點(diǎn)A1,2)代入,得:,

則反比例函數(shù)解析式為,

設(shè)點(diǎn)B

如圖,連接AB,過(guò)點(diǎn)Ax軸的平行線,交y軸于點(diǎn)C,過(guò)點(diǎn)By軸的平行線,交直線AC于點(diǎn)D,

OCA=D=90°,
∴∠AOC+OAC=90°
OB為圓的直徑,
∴∠OAB=90°,
∴∠OAC+BAD=90°,
∴∠AOC=BAD,
AOC∽△BAD,

,即: ,

解得:m=1(舍)或m=4,
則點(diǎn)B點(diǎn)坐標(biāo)為:(4,0.5).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若拋物線y=x2+bx(b>2)上存在關(guān)于直線y=x成軸對(duì)稱(chēng)的兩個(gè)點(diǎn),則b的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>

(1)x-1290;

(2)3x+5=x+52;

(3)x26x550;

(4)2x(x3)10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將平行四邊形ABCD的邊DC延長(zhǎng)到點(diǎn)E,使CE=DC,連接AE,交BC于點(diǎn)F

1)求證:AC=BE

2)若∠AFC=2D,連接AC,BE.求證:四邊形ABEC是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)P是正方形ABCDAB上一點(diǎn)(不與A,B重合),連接PD并將線段PD繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,得到線段PE,連接BE,則∠CBE等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果店銷(xiāo)售一種水果的成本價(jià)是/千克.在銷(xiāo)售過(guò)程中發(fā)現(xiàn),當(dāng)這種水果的價(jià)格定在/千克時(shí),每天可以賣(mài)出千克.在此基礎(chǔ)上,這種水果的單價(jià)每提高/千克,該水果店每天就會(huì)少賣(mài)出千克.

若該水果店每天銷(xiāo)售這種水果所獲得的利潤(rùn)是元,則單價(jià)應(yīng)定為多少?

在利潤(rùn)不變的情況下,為了讓利于顧客,單價(jià)應(yīng)定為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線l:y=ax2+bx+c(a,b,c均不為0)的頂點(diǎn)為M,與y軸的交點(diǎn)為N,我們稱(chēng)以N為頂點(diǎn),對(duì)稱(chēng)軸是y軸且過(guò)點(diǎn)M的拋物線為拋物線l的衍生拋物線,直線MN為拋物線l的衍生直線.

(1)如圖,拋物線y=x2﹣2x﹣3的衍生拋物線的解析式是   ,衍生直線的解析式是   

(2)若一條拋物線的衍生拋物線和衍生直線分別是y=﹣2x2+1和y=﹣2x+1,求這條拋物線的解析式;

(3)如圖,設(shè)(1)中的拋物線y=x2﹣2x﹣3的頂點(diǎn)為M,與y軸交點(diǎn)為N,將它的衍生直線MN先繞點(diǎn)N旋轉(zhuǎn)到與x軸平行,再沿y軸向上平移1個(gè)單位得直線n,P是直線n上的動(dòng)點(diǎn),是否存在點(diǎn)P,使△POM為直角三角形?若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=﹣x2+2x+3的頂點(diǎn)為D,它與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C

1)求頂點(diǎn)D的坐標(biāo);

2)求直線BC的解析式;

3)求△BCD的面積;

4)當(dāng)點(diǎn)P在直線BC上方的拋物線上運(yùn)動(dòng)時(shí),△PBC的面積是否存在最大值?若存在,請(qǐng)求出這個(gè)最大值,并且寫(xiě)出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,AB=AC,∠BAC=36°,過(guò)點(diǎn)A作ADBC,與ABC的平分線交于點(diǎn)D,BD與AC交于點(diǎn)E,與O交于點(diǎn)F.

(1)求DAF的度數(shù);

(2)求證:AE2=EFED;

查看答案和解析>>

同步練習(xí)冊(cè)答案