【題目】已知:如圖,在四邊形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.
(1)求證:AB=BC;
(2)當BE⊥AD于E時,試證明:BE=AE+CD.
【答案】(1)(2)證明見解析
【解析】
(1)題目中存在直角,垂直,含線段平方的等式,因此考慮連接AC,構(gòu)造直角三角形,利用勾股定理證明
(2)可采用“截長”法證明,過點C作CF⊥BE于F,易證CD=EF,只需再證明AE=BF即可,這一點又可通過全等三角形獲證.
解:(1)證明:連接AC。
∵∠ABC=90°,∴AB2+BC2=AC2。
∵CD⊥AD,∴AD2+CD2=AC2。
∵AD2+CD2=2AB2,
∴AB2+BC2=2AB2
∴AB=BC。
(2)證明:過C作CF⊥BE于F
∵BE⊥AD,∴四邊形CDEF是矩形
∴CD=EF
∵∠ABE+∠BAE=90°,∠ABE+∠CBF=90
∴∠BAE=∠CBF。
又∵AB=BC,∠BEA=∠CFB,
∴△BAE≌△CBF(AAS)
∴AE=BF。
∴BE=BF+EF =AE+CD
科目:初中數(shù)學 來源: 題型:
【題目】下面是小東設(shè)計的“過直線外一點作這條直線的平行線”的尺規(guī)作圖過程.已知:如圖1,直線l及直線l外一點A.
求作:直線AD,使得AD∥l.作法:如圖2,
①在直線l上任取一點B,連接AB;
②以點B為圓心,AB長為半徑畫弧,
交直線l于點C;
③分別以點A,C為圓心,AB長為半徑
畫弧,兩弧交于點D(不與點B重合);
④作直線AD.
所以直線AD就是所求作的直線.根據(jù)小東設(shè)計的尺規(guī)作圖過程,完成下面的證明.(說明:括號里填推理的依據(jù))
證明:連接CD.
∵AD=CD=__________=__________,
∴四邊形ABCD是 ( ).
∴AD∥l( ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的袋子中裝有三個完全相同的小球,分別標有數(shù)字3、4、5.從袋子中隨機取出一個小球,用小球上的數(shù)字作為十位的數(shù)字,然后放回;再取出一個小球,用小球上的數(shù)字作為個位上的數(shù)字,這樣組成一個兩位數(shù),試問:按這種方法能組成哪些位數(shù)?十位上的數(shù)字與個位上的數(shù)字之和為9的兩位數(shù)的概率是多少?用列表法或畫樹狀圖法加以說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與探究
如圖,等腰直角中,,,現(xiàn)將該三角形放置在平面直角坐標系中,點坐標為,點坐標為.
(1)過點作軸,求的長及點的坐標;
(2)連接,若為坐標平面內(nèi)異于點的點,且以、、為頂點的三角形與全等,請直接寫出滿足條件的點的坐標;
(3)已知,試探究在軸上是否存在點,使是以為腰的等腰三角形?若存在,請直接寫出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場銷售一種商品,進價為每個20元,規(guī)定每個商品售價不低于進價,且不高于60元,經(jīng)調(diào)查發(fā)現(xiàn),每天的銷售量y(個)與每個商品的售價x(元)滿足一次函數(shù)關(guān)系,其部分數(shù)據(jù)如下所示:
每個商品的售價x(元) | … | 30 | 40 | 50 | … |
每天的銷售量y(個) | 100 | 80 | 60 | … |
(1)求y與x之間的函數(shù)表達式;
(2)設(shè)商場每天獲得的總利潤為w(元),求w與x之間的函數(shù)表達式;
(3)不考慮其他因素,當商品的售價為多少元時,商場每天獲得的總利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l:y=x﹣與x軸交于點B1,以O(shè)B1為邊長作等邊三角形A1OB1,過點A1作A1B2平行于x軸,交直線l于點B2,以A1B2為邊長作等邊三角形A2A1B2,過點A2作A2B3平行于x軸,交直線l于點B3,以A2B3為邊長作等邊三角形A3A2B3,…,則點A2017的橫坐標是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,測量人員在山腳A處測得山頂B的仰角為45°,沿著仰角為30°的山坡前進1000米到達D處,在D處測得山頂B的仰角為60°,求山的高度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達式;
(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;
(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為半圓的直徑,O為半圓的圓心,AC是弦,取弧的中點D,過點D作DE⊥AC交AC的延長線于點E.
(1)求證:DE是⊙O的切線;
(2)當AB=10,AC=5時,求CE的長;
(3)連接CD,AB=10.當=時,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com