【題目】已知,如圖正方形ABCD中,E為BC上任意一點,過E作EF⊥BC,交BD于F,G為DF的中點,連AE和AG.
(1)如圖1,求證:∠FEA+∠DAG=45°;
(2)如圖2在(1)的條件下,設BD和AE的交點為H,BG=8,DH=9,求AD的長.

【答案】
(1)證明:作GM⊥BC于M,連接GE、GC,如圖1,

∵四邊形ABCD為正方形,

∴DA=DC,∠ADB=∠CDB=45°,

在△ADG和△CDG中

∴△ADG≌△CDG,

∴AG=CG,∠DAG=∠1,∠AGD=∠CGD,

∵G點為DF的中點,F(xiàn)E⊥BC,GM⊥BC,DC⊥BC,

∴GM為梯形CDFE的中位線,

∴EM=CM,

∴GE=GC,∠5=∠4,

∴GM平分∠EGC,

∴∠2=∠3,

∴∠1=∠6=∠DAG,GA=GE,

∵GM∥CD,

∴∠MGD=180°﹣∠GDC=135°,即∠2+∠DGC=135°,

∴∠AGD+∠3=∠2+∠DGC=135°,

∴∠AGE=90°,

∴△AGE為等腰直角三角形,

∴∠AEG=45°,即∠FEA+∠6=45°,

∴∠FEA+∠DAG=45°;


(2)解:把△ADG繞點A順時針旋轉(zhuǎn)90°得到△ABQ,連接QH,如圖2,

∴∠ABQ=∠ABD=45°,AQ=AD,BQ=DG,∠QAG=90°,

∵∠FEA+∠DAG=45°;

而∠FEA=∠BAE,

∴∠BAE+∠DAG=45°;

∴∠EAG=45°,

∴∠QAE=45°,

在△QAH和△GAH中

,

∴△QAH≌△GAH,

∴HQ=HG,

設BH=x,則HG=BG﹣BH=8﹣x,

∴HQ=8﹣x,

∵DH=BG+DG﹣BH,

∴DG=9﹣8+x=x+1,

∴BQ=x+1,

∵∠ABQ+∠ABD=45°+45°=90°,

∴△BQH為直角三角形,

∴BQ2+BH2=QH2,即(x+1)2+x2=(8﹣x)2,解得x=3,

∴BD=BH+DH=3+9=12,

∴AD= BD=6


【解析】(1)作GM⊥BC于M,連接GE、GC,如圖1,由正方形的性質(zhì)得DA=DC,∠ADB=∠CDB=45°,再證明△ADG≌△CDG得到AG=CG,∠DAG=∠1,∠AGD=∠CGD,接著利用等腰三角形的判定與性質(zhì)得到GC=GE,∠5=∠4,∠2=∠3,從而得到∠1=∠6=∠DAG,GA=GE,再證明△AGE為等腰直角三角形得到∠AEG=45°,從而得到∠FEA+∠DAG=45°;(2)把△ADG繞點A順時針旋轉(zhuǎn)90°得到△ABQ,連接QH,如圖2,利用旋轉(zhuǎn)的性質(zhì)得∠ABQ=∠ABD=45°,AQ=AD,BQ=DG,∠QAG=90°,再證明△QAH≌△GAH得到HQ=HG,設BH=x,用x表示出則HG=HQ=8﹣x,BQ=x+1,然后在Rt△BQH中利用勾股定理得到(x+1)2+x2=(8﹣x)2,解得x=3,則BD=BH+DH=12,然后根據(jù)等腰直角三角形的性質(zhì)求AD.
【考點精析】解答此題的關(guān)鍵在于理解正方形的性質(zhì)的相關(guān)知識,掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)不等式的基本性質(zhì),以下各題的結(jié)論正確的是(  )

A.ab,則5b≤5aB.b3a0,則b3a

C.若﹣5x≥20,則x4D.ab,則acbc

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,若第二象限內(nèi)的P點到x軸的距離為2,到y軸的距離為3,則P點的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】校決定加強毛球、籃球、乒乓球、排球、球五項球類運動,每位同學必須且只能選擇一項球類運動,對該校學生隨機抽取行調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計圖:

運動項目

頻數(shù)(人數(shù))

毛球

30

籃球

乒乓球

36

排球

12

根據(jù)以上圖表信息解答下列問題:

(1)頻數(shù)分布表中的 , ;

(2)在扇形統(tǒng)計圖中,“排球”所在的扇形的圓心角為 ;

(3)全校有多少名學生選擇參加乒乓球運動?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】截止至202047日,海外新型冠狀病毒肺炎疫情累計確診人數(shù)超過126萬人,126萬用科學記數(shù)法表示為( )

A.0.126×106B.1.26×106C.0.126×107D.1.26×107

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在平面直角坐標系中,等邊的邊長為6,點在邊上,點在邊上,且.反比例函數(shù)的圖象恰好經(jīng)過點和點.則的值為

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】蘋果的進價是每千克3.8元,銷售中估計有5%的蘋果正常損耗.為避免虧本,商家把售價應該至少定為每千克 元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某長途汽車站規(guī)定,乘客可以免費攜帶一定質(zhì)量的行李,若超過該質(zhì)量則需購買行李票,且行李票y(元)與行李質(zhì)量x(千克)間的一次函數(shù)關(guān)系式為y=kx﹣5(k≠0),現(xiàn)知貝貝帶了60千克的行李,交了行李費5元.
(1)若京京帶了84千克的行李,則該交行李費多少元?
(2)旅客最多可免費攜帶多少千克的行李?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】動手操作題:如何能把一個三角形分成兩個等腰三角形嗎?
實際上,一個三角形只要具備下列三個條件之一,都可以被分成兩個等腰三角形:
①一個角為90°;②一個角是另一個的2倍(第三角必須大于45°);
③一個角是另一個角的3倍.今天,我們通過作圖來驗證這個結(jié)論。
(1)問題1:
如圖,Rt△ABC中,求畫一條直線l將△ABC分成兩個等腰三角形.并說明直線l與△ABC
邊上的交點D的位置.

(2)問題2:
如圖,△ABC中,∠ACB=80°, ∠BAC=40°,求畫一條直線l把△ABC分成兩個等腰三角形, 并在圖中標注兩個頂角的度數(shù).

(3)問題3:
如圖,△ABC中,∠ACB=120°, ∠BAC=40°,求畫一條直線l把△ABC分成兩個等腰三角形, 并在圖中標注兩個頂角的度數(shù).

(4)問題:4:
如果等腰三角形能被一條直線分成兩個等腰三角形,則原等腰三角形的頂角可以是°.(至少寫出三個)
(5)拓展:已知△ABC的三條邊長分別為3,4,6,在△ABC所在平面內(nèi)畫一條直線,將△ABC分割成兩個三角形,使其中的一個是等腰三角形,則這樣的直線最多可畫( )
A.6條
B.7條
C.8條
D.9條

查看答案和解析>>

同步練習冊答案