【題目】若關(guān)于t的不等式組恰有三個(gè)整數(shù)解,則關(guān)于x的一次函數(shù)y=x-a的圖象與反比例函數(shù)y=的圖象的公共點(diǎn)的個(gè)數(shù)為______.
【答案】0或1.
【解析】
試題根據(jù)不等式組恰有三個(gè)整數(shù)解,得出a的取值范圍,聯(lián)立一次函數(shù)和反比例函數(shù)解析式,利用二次函數(shù)的性質(zhì)判斷其判別式的值的情況,從而確定交點(diǎn)的個(gè)數(shù).
試題解析:解不等式組得a≤t≤.
∵原不等式組恰有三個(gè)整數(shù)解,即-1,0,1,
∴-2<a≤-1.
一次函數(shù)y=x-a的圖象與反比例函數(shù)y=的圖象的交點(diǎn)坐標(biāo)即是方程組的解.
消去方程組中的y得,x-a=.
即x2-4ax-4(3a+2)=0.
其判別式△=(-4a)2+16(3a+2)=16(a2+3a+2)=16(a+1)(a+2).當(dāng)-2<a≤-1時(shí),(a+1)(a+2)≤0,即△≤0.
∴兩個(gè)圖象的公共點(diǎn)的個(gè)數(shù)為0或1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】華星商店準(zhǔn)備從陽光機(jī)械廠購進(jìn)甲、乙兩種零件進(jìn)行銷售,若一個(gè)甲種零件的進(jìn)價(jià)比一個(gè)乙種零件的進(jìn)價(jià)多50元,用4000元購進(jìn)甲種零件的數(shù)量是用1500元購進(jìn)乙種零件的數(shù)量的2倍.
(1)求每個(gè)甲種零件,每個(gè)乙種零件的進(jìn)價(jià)分別為多少元?
(2)華星商店甲種零件每件售價(jià)為260元,乙種零件每件售價(jià)為190元,商店根據(jù)市場需求.決定向該廠購進(jìn)一批零件、且購進(jìn)乙種零件的數(shù)量比購進(jìn)甲種零件的數(shù)量的2倍還多4個(gè),若本次購進(jìn)的兩種零件全部售出后,總獲利不少于2400元、求該商店本次購進(jìn)甲種零件至少是多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A,B在數(shù)軸上對應(yīng)的數(shù)分別用a,b表示,并且關(guān)于x的多項(xiàng)式(a+10)x7+2xb-15﹣4是五次二項(xiàng)式,P,Q是數(shù)軸上的兩個(gè)動點(diǎn).
(1)a=_____,b=_____;
(2)設(shè)點(diǎn)P在數(shù)軸上對應(yīng)的數(shù)為x,PA+PB=40,求x的值;
(3)動點(diǎn)P,Q分別從A,B兩點(diǎn)同時(shí)出發(fā)向左運(yùn)動,點(diǎn)P,Q的運(yùn)動速度分別為3個(gè)單位長度/秒和2個(gè)單位長度/秒.點(diǎn)M是線段PQ中點(diǎn),設(shè)運(yùn)動的時(shí)間小于6秒,問6AM+5PB的值是否發(fā)生變化?若不變,求其值;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的邊AB、AC為腰分別向外作等腰直角三角形ABD和等腰直角三角形ACE,連接DE.若M為BC中點(diǎn),MA延長線交DE于點(diǎn)H,
(1) 求證:AH⊥DE.
(2) 若DE=4,AH=3,求△ABM的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某家電商場計(jì)劃用9萬元從生產(chǎn)廠家購進(jìn)50臺電視機(jī),已知該廠家生產(chǎn)3種不同型號的電視機(jī),出廠價(jià)分別為A種每臺1500元,B種每臺2100元,C種每臺2500元.
(1)若家電商場同時(shí)購進(jìn)兩種不同型號的電視機(jī)共50臺,用去9萬元,請你計(jì)算一下商場有哪幾種進(jìn)貨方案?
(2)若商場銷售一臺A種電視機(jī)可獲利150元,銷售一臺B種電視機(jī)可獲利200元,銷售一臺C種電視機(jī)可獲利250元,在同時(shí)購進(jìn)兩種不同型號的電視機(jī)方案中,為了使銷售時(shí)獲利最多,應(yīng)選擇哪種方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對角線AC,BD相交于點(diǎn)O,將BD向兩個(gè)方向延長,分別至點(diǎn)E和點(diǎn)F,且使BE=DF.
(1)求證:四邊形AECF是菱形;
(2)若AC=4,BE=1,直接寫出菱形AECF的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形 ABCD 中,對角線 AC、BD 相交于點(diǎn) O,過點(diǎn) O 的兩條直線分別交邊 AB、CD、AD、BC 于點(diǎn) E、F、G、H.
(感知)如圖①,若四邊形 ABCD 是正方形,且 AG=BE=CH=DF,則 S 四邊形AEOG= S 正方形 ABCD;
(拓展)如圖②,若四邊形 ABCD 是矩形,且 S 四邊形 AEOG=S 矩形 ABCD,設(shè) AB=a, AD=b,BE=m,求 AG 的長(用含 a、b、m 的代數(shù)式表示);
(探究)如圖③,若四邊形 ABCD 是平行四邊形,且 AB=3,AD=5,BE=1, 試確定 F、G、H 的位置,使直線 EF、GH 把四邊形 ABCD 的面積四等分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=45°.若AD平分∠BAC交BC于D,BE⊥AC于E,且交A于O,連接OC.則下列說法中正確的是( 。AD⊥BC;②OC平分BE;③OE=CE;④△ACD≌△BCE;⑤△OCE的周長=AC的長度
A.①②③B.②④⑤C.①③⑤D.①③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是菱形ABCD邊上的一動點(diǎn),它從點(diǎn)A出發(fā)沿在A→B→C→D路徑勻速運(yùn)動到點(diǎn)D,設(shè)△PAD的面積為y,P點(diǎn)的運(yùn)動時(shí)間為x,則y關(guān)于x的函數(shù)圖象大致為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com