【題目】如圖,O是直線AB上一點(diǎn),OD平分∠AOC,DOE=90°,則以下結(jié)論正確的個(gè)數(shù)是(  )

①∠AOD與∠BOE互為余角;②∠AODCOE;③∠BOECOE;④∠DOC與∠DOB互補(bǔ).

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】C

【解析】根據(jù)余角的性質(zhì)補(bǔ)角的性質(zhì),可得答案.

①∵∠DOE=90°,∴∠AOD+∠BOE=90°,∴∠AOD與∠BOE互為余角,故①正確

②∴OD平分∠AOC∴∠AOD=COD∵∠DOC+∠COE=90°,∴∠AOD+∠COE=90°,故②錯(cuò)誤;

OD平分∠AOC,∴∠AOD=COD∵∠DOC+∠COE=90°,AOD+∠BOE=90°,∴∠COE=BOE,故③正確;

④∵OD平分∠AOC∴∠AOD=COD∵∠AOD+∠DOB=180°,∴∠DOC+∠DOB=180°,故④正確

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度.平面直角坐標(biāo)系xOy的原點(diǎn)O在格點(diǎn)上,x軸、y軸都在格線上.線段AB的兩個(gè)端點(diǎn)也在格點(diǎn)上.

1)若將線段AB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到線段A1B1,試在圖中畫出線段A1B1

2)若線段A2B2與線段A1B1關(guān)于y軸對(duì)稱,請(qǐng)畫出線段A2B2

3)若點(diǎn)P是此平面直角坐標(biāo)系內(nèi)的一點(diǎn),當(dāng)點(diǎn)A、B1、B2、P四邊圍成的四邊形為平行四邊形時(shí),請(qǐng)你直接寫出點(diǎn)P的坐標(biāo)(寫出一個(gè)即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為△ABC外接圓⊙O的直徑,點(diǎn)P是線段CA延長(zhǎng)線上一點(diǎn),點(diǎn)E在圓上且滿足PE2=PAPC,連接CE,AE,OE,OE交CA于點(diǎn)D.
(1)求證:△PAE∽△PEC;
(2)求證:PE為⊙O的切線;
(3)若∠B=30°,AP= AC,求證:DO=DP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知P點(diǎn)是∠AOB平分線上一點(diǎn),PC⊥OA,PD⊥OB,垂足為C、D.

(1)求證:∠PCD=∠PDC;

(2)求證:OP是線段CD的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知線段ABCD的公共部分BD=AB= CD,線段AB、CD的中點(diǎn)E,F之間距離是10cmAB,CD的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點(diǎn)D,PE⊥OB于點(diǎn)E.如果點(diǎn)M是OP的中點(diǎn),則DM的長(zhǎng)是(
A.2
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某景區(qū)內(nèi)的環(huán)形路是邊長(zhǎng)為1000米的正方形ABCD.現(xiàn)有1號(hào)、2號(hào)兩輛游覽車分別從出口A和景點(diǎn)C同時(shí)出發(fā),1號(hào)車順時(shí)針、2號(hào)車逆時(shí)針沿環(huán)形路連續(xù)循環(huán)行駛,供游客隨時(shí)免費(fèi)乘車(上、下車的時(shí)間忽略不計(jì)),兩車速度均為200/,設(shè)行駛時(shí)間為t,解決下列問題:

(1)當(dāng)0t10時(shí),分別寫出1號(hào)車、2號(hào)車在左半環(huán)線離出口A的路程(用含t的代數(shù)式表示);

(2)當(dāng)0t10時(shí),求當(dāng)兩車相距的路程是400米時(shí)的t值;

(3)當(dāng)t為何值時(shí),1號(hào)車第三次恰好經(jīng)過景點(diǎn)C?并直接寫出這一段時(shí)間內(nèi)它與2號(hào)車相遇的次數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,回答下列問題:

(1)比較∠FOD與∠FOE的大小;

(2)借助三角板比較∠DOE與∠BOF的大。

(3)借助量角器比較∠AOE與∠DOF的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于一組數(shù)據(jù):10,17,15,10,18,20,下列說法錯(cuò)誤的是( )
A.中位數(shù)是16
B.方差是
C.眾數(shù)是10
D.平均數(shù)是15

查看答案和解析>>

同步練習(xí)冊(cè)答案