【題目】小明從家步行到校車站臺(tái),等候坐校車去學(xué)校,圖中的折線表示這一過程中小明的路程S(km)與所花時(shí)間t(min)間的函數(shù)關(guān)系;下列說法:①他步行了1km到校車站臺(tái);②他步行的速度是100m/min;③他在校車站臺(tái)等了6min;④校車運(yùn)行的速度是200m/min;其中正確的個(gè)數(shù)是( )個(gè).

A. 1B. 2C. 3D. 4

【答案】C

【解析】

根據(jù)題意和圖形可知小明先步行然后等車然后坐車,可知小明步行時(shí)間為10分鐘,等車時(shí)間為(16-10)分鐘,坐車時(shí)間為(30-16)分鐘,然后根據(jù)v=的關(guān)系式,即可計(jì)算出步行的速度和校車的速度,然后逐一分析判斷即可.

有圖象可得小明步行10分鐘,步行了1km到達(dá)校車站臺(tái),

所以步行的速度為:1000÷10=100m/min),

有圖象可得:小明在校車站臺(tái)等了16-10=6min),

利用圖象可得:公交車行駛的距離為:8-1=7km),

公交車行駛的時(shí)間為:30-16=14min),

所以校車的速度是:7000÷14=500m/min).

故①②③正確,④錯(cuò)誤;

故本題答案為:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對(duì)于任意三點(diǎn)AB,C,給出如下定義:

如果矩形的任何一條邊均與某條坐標(biāo)軸平行,且A,BC三點(diǎn)都在矩形的內(nèi)部或邊界上,則稱該矩形為點(diǎn)A,BC的覆蓋矩形.點(diǎn)A,BC的所有覆蓋矩形中,面積最小的矩形稱為點(diǎn)A,B,C的最優(yōu)覆蓋矩形.例如,下圖中的矩形A1B1C1D1A2B2C2D2,AB3C3D3都是點(diǎn)A,B,C的覆蓋矩形,其中矩形AB3C3D3是點(diǎn)A,B,C的最優(yōu)覆蓋矩形.

1)已知A(﹣2,3),B5,0),Ct,﹣2).

當(dāng)t2時(shí),點(diǎn)AB,C的最優(yōu)覆蓋矩形的面積為

若點(diǎn)A,B,C的最優(yōu)覆蓋矩形的面積為40,求直線AC的表達(dá)式;

2)已知點(diǎn)D1,1).Emn)是函數(shù)yx0)的圖象上一點(diǎn),⊙P是點(diǎn)O,DE的一個(gè)面積最小的最優(yōu)覆蓋矩形的外接圓,求出⊙P的半徑r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,∠A,∠B,∠C的對(duì)邊分別是a,bc,關(guān)于x的方程a1x2+2bx+c1+x2)=0有兩個(gè)相等實(shí)根,且3ca+3b

1)試判斷△ABC的形狀;

2)求sinA+sinB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,如圖所示,若AF=4,AB=7.

(1)求DE的長(zhǎng)度;

(2)試猜想:直線BE與DF有何位置關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2;將△ABC繞點(diǎn)順時(shí)針方向旋轉(zhuǎn)n度后得到△EDC,此時(shí)點(diǎn)DAB邊上,斜邊DEAC邊于點(diǎn)F,求n的大小和圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形, ,垂足為的延長(zhǎng)線相交于,,連接;

(1)如圖,求證:四邊形是菱形;

(2)如圖,連接,,在不添加任何輔助線的情況下,直接寫出圖中所有面積等于的面積的鈍角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD中,∠BAD的平分線交BC于點(diǎn)E,∠ABC的平分線交AD于點(diǎn)F,AEBF相交于點(diǎn)O,連接EF

(1)求證:四邊形ABEF是菱形;

(2)若AE=6,BF=8,CE,求□ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=7.5,AC=9,SABC=.動(dòng)點(diǎn)PA點(diǎn)出發(fā),沿AB方向以每秒5個(gè)單位長(zhǎng)度的速度向B點(diǎn)勻速運(yùn)動(dòng),動(dòng)點(diǎn)QC點(diǎn)同時(shí)出發(fā),以相同的速度沿CA方向向A點(diǎn)勻速運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到B點(diǎn)時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng),以PQ為邊作正PQM(P、Q、M按逆時(shí)針排序),以QC為邊在AC上方作正QCN,設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒.

(1)求cosA的值;

(2)當(dāng)PQMQCN的面積滿足SPQM=SQCN時(shí),求t的值;

(3)當(dāng)t為何值時(shí),PQM的某個(gè)頂點(diǎn)(Q點(diǎn)除外)落在QCN的邊上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,,,點(diǎn)E是邊BC的中點(diǎn)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿著AB運(yùn)動(dòng)到點(diǎn)B停止,速度為每秒鐘1個(gè)單位長(zhǎng)度,連接PE,過點(diǎn)EPE的垂線交射線AD與點(diǎn)Q,連接PQ,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.

當(dāng)時(shí),______

是否存在這樣的t值,使為等腰直角三角形?若存在,求出相應(yīng)的t值,若不存在,請(qǐng)說明理由;

當(dāng)t為何值時(shí),的面積等于10?

查看答案和解析>>

同步練習(xí)冊(cè)答案