【題目】如圖,矩形ABCD中,AB=8,BC=15,點(diǎn)E是AD邊上一點(diǎn),連接BE,把△ABE沿BE折疊,使點(diǎn)A落在點(diǎn)A′處,點(diǎn)F是CD邊上一點(diǎn),連接EF,把△DEF沿EF折疊,使點(diǎn)D落在直線EA′上的點(diǎn)D′處,當(dāng)點(diǎn)D′落在BC邊上時(shí),AE的長(zhǎng)為

【答案】
【解析】解:∵把△ABE沿BE折疊,使點(diǎn)A落在點(diǎn)A′處, ∴AE=AE′,AB=BE′=8,∠A=∠BE′E=90°,
∵把△DEF沿EF折疊,使點(diǎn)D落在直線EA′上的點(diǎn)D′處,
∴DE=D′E,DF=D′F,∠ED′F=∠D=90°,
設(shè)AE=A′E=x,則DE=ED′=15﹣x,
∵AD∥BC,
∴∠1=∠EBC,
∵∠1=∠2,
∴∠2=∠EBD′,
∴BD′=ED′=15﹣x,
∴A′D′=15﹣2x,
在Rt△BA′D′中,
∵BD′2=BA′2+A′D′2 ,
∴82+(15﹣2x)2=(15﹣x)2
解得x= ,
∴AE=

【考點(diǎn)精析】關(guān)于本題考查的矩形的性質(zhì)和翻折變換(折疊問(wèn)題),需要了解矩形的四個(gè)角都是直角,矩形的對(duì)角線相等;折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,對(duì)稱軸是對(duì)應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖點(diǎn)O為線段AB上任意一點(diǎn)(不與A、B重合),分別以AO、BO為一腰在AB的同側(cè)作等腰AOC和等腰BOD,OA=OC,OB=OD,AOC與∠BOD都是銳角,且∠AOC=BOD ,ADBC交于點(diǎn)P.

(1)試說(shuō)明CB=AD;

(2)若∠COD =80°,求∠APB的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了豐富同學(xué)們的課余生活,某學(xué)校舉行“親近大自然”戶外活動(dòng),現(xiàn)隨機(jī)抽取了部分學(xué)生進(jìn)行主題為“你最想去的景點(diǎn)是?”的問(wèn)卷調(diào)查,要求學(xué)生只能從“A(植物園),B(花卉園),C(濕地公園),D(森林公園)”四個(gè)景點(diǎn)中選擇一項(xiàng),根據(jù)調(diào)查結(jié)果,繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)解答下列問(wèn)題:
(1)本次調(diào)查的樣本容量是;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該學(xué)校共有3600名學(xué)生,試估計(jì)該校最想去濕地公園的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】應(yīng)用題

有A、B兩個(gè)商場(chǎng)以同樣價(jià)格出售同樣商品,且各自推出了不同的優(yōu)惠方案:

在A商場(chǎng)累計(jì)購(gòu)物超過(guò)200元后,超出部分按80%收費(fèi);

在B商場(chǎng)累計(jì)購(gòu)物滿100元后,超出的部分按90%收費(fèi)。

設(shè)累計(jì)購(gòu)物x(x>200)元,用x表示A、B兩商場(chǎng)的實(shí)際費(fèi)用并指明顧客選擇到哪家購(gòu)物合適?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】推理填空:如圖ABCD,1=2,3=4,試說(shuō)明ADBE.

解:∵ABCD(已知)

∴∠4=1+____________

∵∠3=4(已知)

∴∠3=1+____________

∵∠1=2(已知)

∴∠1+∠CAF=2+∠CAF_______

即∠_____=_____

∴∠3=____________

ADBE_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△ABC中,∠B=60°,點(diǎn)M從點(diǎn)B出發(fā)沿射線BC方向,在射線BC上運(yùn)動(dòng).在點(diǎn)M運(yùn)動(dòng)的過(guò)程中,連結(jié)AM,并以AM為邊在射線BC上方,作等邊△AMN,連結(jié)CN.

(1)當(dāng)∠BAM=   °時(shí),AB=2BM;

(2)請(qǐng)?zhí)砑右粋(gè)條件:   ,使得△ABC為等邊三角形;

①如圖1,當(dāng)△ABC為等邊三角形時(shí),求證:BM=CN;

②如圖2,當(dāng)點(diǎn)M運(yùn)動(dòng)到線段BC之外時(shí),其它條件不變,①中結(jié)論BM=CN還成立嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,BD平分∠ABCCD平分∠ACB,過(guò)點(diǎn)DEFBC,與ABAC分別相交于E、F,若已知AB=9,AC=7,求AEF的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A=2x2+3xy-2x-1,B=-x2+xy-1,且3A+6B的值與x無(wú)關(guān),求y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,點(diǎn)E在邊BC,如果點(diǎn)F是邊AD上的點(diǎn),那么CDFABE不一定全等的條件是(  )

A. DF=BE B. AF=CE

C. CF=AE D. CFAE

查看答案和解析>>

同步練習(xí)冊(cè)答案