【題目】如圖,曲線C由上半橢圓 和部分拋物線 連接而成,C1與C2的公共點(diǎn)為A,B,其中C1的離心率為 .
(1)求a,b的值;
(2)過點(diǎn)B的直線l與C1 , C2分別交于點(diǎn)P,Q(均異于點(diǎn)A,B),是否存在直線l,使得PQ為直徑的圓恰好過點(diǎn)A,若存在直線l的方程;若不存在,請說明理由.
【答案】
(1)
解:在C1,C2的方程中,令y=0,可得b=1,且A(﹣1,0),B(1,0)是上半橢圓C1的左右頂點(diǎn),
設(shè)C1的半焦距為c,由 及a2﹣c2=b2﹣1,
可得a=2,所以a=2,b=1
(2)
解:由(1),上半橢圓C1的方程為 ,
由題意知,直線l與x軸不重合也不垂直,設(shè)其方程為y=k(x﹣1)(k≠0),
代入C1的方程,整理得(k2+4)x2﹣2k2x+k2﹣4=0,
設(shè)點(diǎn)P的坐標(biāo)為(xP,yP),
因?yàn)橹本l過點(diǎn)B,所以x=1是方程的一個(gè)根,
由求根公式,得 ,所以點(diǎn)P的坐標(biāo)為 ,
同理,由 ,得點(diǎn)Q的坐標(biāo)為(﹣k﹣1,﹣k2﹣2k),
所以 ,
依題意可知AP⊥AQ,所以 ,即 ,
即 ,
因?yàn)閗≠0,所以k﹣4(k+2)=0,解得 ,
經(jīng)檢驗(yàn), 符合題意,故直線l的方程為
【解析】(1)在C1 , C2的方程中,令y=0,可得b=1,且A(﹣1,0),B(1,0)是上半橢圓C1的左右頂點(diǎn),設(shè)C1的半焦距為c,由 及a2﹣c2=b2﹣1,聯(lián)立解得a.(2)由(1),上半橢圓C1的方程為 ,由題意知,直線l與x軸不重合也不垂直,設(shè)其方程為
y=k(x﹣1)(k≠0),代入C1的方程,整理得(k2+4)x2﹣2k2x+k2﹣4=0,設(shè)點(diǎn)P的坐標(biāo)為(xP , yP),由求根公式,得點(diǎn)P的坐標(biāo)為 ,同理,由 ,得點(diǎn)Q的坐標(biāo)為(﹣k﹣1,﹣k2﹣2k),依題意可知AP⊥AQ,所以 ,即可得出k.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)絡(luò)營銷部門為了統(tǒng)計(jì)某市網(wǎng)友2016年12月12日的網(wǎng)購情況,從該市當(dāng)天參與網(wǎng)購的顧客中隨機(jī)抽查了男女各30人,統(tǒng)計(jì)其網(wǎng)購金額,得到如下頻率分布直方圖:
網(wǎng)購達(dá)人 | 非網(wǎng)購達(dá)人 | 合計(jì) | |
男性 | 30 | ||
女性 | 12 | 30 | |
合計(jì) | 60 |
若網(wǎng)購金額超過2千元的顧客稱為“網(wǎng)購達(dá)人”,網(wǎng)購金額不超過2千元的顧客稱為“非網(wǎng)購達(dá)人”.
(Ⅰ)若抽取的“網(wǎng)購達(dá)人”中女性占12人,請根據(jù)條件完成上面的2×2列聯(lián)表,并判斷是否有99%的把握認(rèn)為“網(wǎng)購達(dá)人”與性別有關(guān)?
(Ⅱ)該營銷部門為了進(jìn)一步了解這60名網(wǎng)友的購物體驗(yàn),從“非網(wǎng)購達(dá)人”、“網(wǎng)購達(dá)人”中用分層抽樣的方法確定12人,若需從這12人中隨機(jī)選取3人進(jìn)行問卷調(diào)查.設(shè)ξ為選取的3人中“網(wǎng)購達(dá)人”的人數(shù),求ξ的分布列和數(shù)學(xué)期望.
(參考公式: ,其中n=a+b+c+d)
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=x2(1nx﹣a)+a,則下列結(jié)論中錯(cuò)誤的是( )
A.a>0,x>0,f(x)≥0
B.a>0,x>0,f(x)≤0
C.a>0,x>0,f(x)≥0
D.a>0,x>0,f(x)≤0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx﹣ x2(a∈R).
(1)若x>0,恒有f(x)≤x成立,求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)g(x)=f(x)﹣x有兩個(gè)相異極值點(diǎn)x1、x2 , 求證: + >2ae.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在數(shù)列{an}中,a1=4,an>0,前n項(xiàng)和為Sn , 若 .
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列 的前n項(xiàng)和為Tn , 求Tn .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2cos(ωx﹣φ)(ω>0,φ∈[0,π]的部分圖象如圖所示,若A( , ),B( , ),則函數(shù)f(x)的單調(diào)增區(qū)間為( )
A.[﹣ +2kπ, +2kπ](k∈Z)
B.[ +2kπ, +2kπ](k∈Z)
C.[﹣ +kπ, +kπ](k∈Z)
D.[ +kπ, +kπ](k∈Z)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的右焦點(diǎn)為F(1,0),且經(jīng)過點(diǎn)
(1)求橢圓P的方程;
(2)已知正方形ABCD的頂點(diǎn)A,C在橢圓P上,頂點(diǎn)B,D在直線7x﹣7y+1=0上,求該正方形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD在坐標(biāo)系中如圖所示放置.已知點(diǎn)B、C在x軸上,點(diǎn)A在第二象限,D(2,4),BC=6,反比例函數(shù)y= (x<0)的圖象經(jīng)過點(diǎn)A.
(1)求k值;
(2)把矩形ABCD向左平移,使點(diǎn)C剛好與原點(diǎn)重合,此時(shí)線段AB與反比例函數(shù)y= 的交點(diǎn)坐標(biāo)是什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,MN是⊙O的直徑,QN是⊙O的切線,連接MQ交⊙O于點(diǎn)H,E為上一點(diǎn),連接ME,NE,NE交MQ于點(diǎn)F,且ME2=EFEN.
(1)求證:QN=QF;
(2)若點(diǎn)E到弦MH的距離為1,cos∠Q=,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com