【題目】如圖,已知拋物線y=ax2+bx+4經(jīng)過點(diǎn)(2,4),(-2,-2),交y軸于點(diǎn)A,過點(diǎn)AABy軸交拋物線于點(diǎn)B


1)求拋物線的解析式.
2)將△OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△OA'B',試判斷B'是否落在拋物線上,并說明理由.

【答案】(1)y=-;(2B'落在拋物線上,理由見解析;

【解析】

1)直接利用已知點(diǎn)代入函數(shù)解析式進(jìn)而得出答案;
2)利用已知得出AB點(diǎn)坐標(biāo),再利用旋轉(zhuǎn)的性質(zhì)得出B′點(diǎn)坐標(biāo),進(jìn)而判斷得出答案.

1)將點(diǎn)(2,4),(-2,-2),代入函數(shù)解析式得:

,
解得:

,
故拋物線解析式為:y=-
2B'落在拋物線上,


理由:∵拋物線與y軸于點(diǎn)A
x=0時(shí),y=4,即A0,4),
當(dāng)y=4時(shí),4=-
解得:x1=0,x2=2
B2,4),
∵將OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到OA'B',
B′4-2),
當(dāng)x=4時(shí),-×4+4=-2
B'落在拋物線上.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀理解下面的例題,再按要求解答下列問題:

例題:求代數(shù)式y2+4y+8的最小值.

解:y2+4y+8=y2+4y+4+4=(y+2)2+4

y+2)2≥0

y+2)2+4≥4

y2+4y+8的最小值是4.

(1)求代數(shù)式m2+m+4的最小值;

(2)求代數(shù)式4﹣x2+2x的最大值;

(3)某居民小區(qū)要在一塊一邊靠墻(墻長15m)的空地上建一個(gè)長方形花園ABCD,花園一邊靠墻,另三邊用總長為20m的柵欄圍成.如圖,設(shè)AB=x(m),請問:當(dāng)x取何值時(shí),花園的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣2x2+8x﹣6與x軸交于點(diǎn)A、B,把拋物線在x軸及其上方的部分記作C1,將C1向右平移得C2,C2與x軸交于點(diǎn)B,D.若直線y=x+m與C1、C2共有3個(gè)不同的交點(diǎn),則m的取值范圍是( 。

A. ﹣2<m< B. ﹣3<m<﹣ C. ﹣3<m<﹣2 D. ﹣3<m<﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三孔橋橫截面的三個(gè)孔都呈拋物線形,左右兩個(gè)拋物線形是全等的.正常水位時(shí),大孔水面寬度為,頂點(diǎn)距水面,小孔頂點(diǎn)距水面.當(dāng)水位上漲剛好淹沒小孔時(shí),大孔的水面寬度為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校園空地上有一面墻,長度為20m,用長為32m的籬笆和這面墻圍成一個(gè)矩形花圃,如圖所示.

(1)能圍成面積是126m2的矩形花圃嗎?若能,請舉例說明;若不能,請說明理由.

(2)若籬笆再增加4m,圍成的矩形花圃面積能達(dá)到170m2嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,ABAC,∠A80°,點(diǎn)DE分別在邊AB,AC上,且DADECE

1)求作點(diǎn)F,使得四邊形BDEF為平行四邊形;(要求:尺規(guī)作圖,保留痕跡,不寫作法)

2)連接CF,寫出圖中經(jīng)過旋轉(zhuǎn)可完全重合的兩個(gè)三角形,并指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形中,經(jīng)順時(shí)針旋轉(zhuǎn)后與重合.

1)旋轉(zhuǎn)中心是點(diǎn) ,旋轉(zhuǎn)了 度;

2)如果,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角ABC中,小明進(jìn)行了如下的尺規(guī)作圖:

①分別以點(diǎn)A、B為圓心,以大于AB的長為半徑作弧,兩弧分別相交于點(diǎn)PQ;

②作直線PQ分別交邊ABBC于點(diǎn)E、D

1)小明所求作的直線DE是線段AB   

2)聯(lián)結(jié)AD,AD7,sinDAC,BC9,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,將ABC繞頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到ABCMBC的中點(diǎn),PAB的中點(diǎn),連接PM,若BC2,∠BAC30°,則線段PM的最大值是_____

查看答案和解析>>

同步練習(xí)冊答案