【題目】直線y=﹣3x+3與x軸、y軸分別父于A、B兩點,點A關(guān)于直線x=﹣1的對稱點為點C.
(1)求點C的坐標;
(2)若拋物線y=mx2+nx﹣3m(m≠0)經(jīng)過A、B、C三點,求拋物線的表達式;
(3)若拋物線y=ax2+bx+3(a≠0)經(jīng)過A,B兩點,且頂點在第二象限.拋物線與線段AC有兩個公共點,求a的取值范圍.

【答案】
(1)解:當x=0時,y=﹣3x+3=3,

∴點B的坐標為(0,3);

當y=﹣3x+3=0時,x=1,

∴點A的坐標為(1,0).

∵點A關(guān)于直線x=﹣1的對稱點為點C,

∴點C的坐標為(﹣3,0)


(2)解:將A(1,0)、B(0,3)、C(﹣3,0)代入y=mx2+nx﹣3m中,

,解得: ,

∴拋物線的表達式為y=﹣x2﹣2x+3


(3)解:依照題意畫出圖形,如圖所示.

∵拋物線y=ax2+bx+3(a≠0)經(jīng)過A,B兩點,且頂點在第二象限.拋物線與線段AC有兩個公共點,

,

解得:a<﹣3.

答:a的取值范圍為a<﹣3.


【解析】(1)由一次函數(shù)圖象上點的坐標特征可找出點A、B的坐標,由對稱即可找出點C的坐標;(2)根據(jù)點A、B、C的坐標,利用待定系數(shù)法即可求出拋物線的表達式;(3)依據(jù)題意畫出函數(shù)圖象,利用數(shù)形結(jié)合可得出關(guān)于a的一元一次不等式組,解之即可得出結(jié)論.
【考點精析】通過靈活運用二次函數(shù)的性質(zhì),掌握增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為了解本校九年級學生期末數(shù)學考試情況,小亮在九年級隨機抽取了一部分學生的期末數(shù)學成績?yōu)闃颖,分為A(100﹣90分)、B(89~80分)、C(79~60分)、D(59~0分)四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答以下問題:
(1)這次隨機抽取的學生共有多少人?
(2)請補全條形統(tǒng)計圖;
(3)這個學校九年級共有學生1200人,若分數(shù)為80分(含80分)以上為優(yōu)秀,請估計這次九年級學生期末數(shù)學考試成績?yōu)閮?yōu)秀的學生人數(shù)大約有多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都為的大正方形,兩塊是邊長都為的小正方形,五塊是長為、寬為的全等小矩形,且> .(以上長度單位:cm)

(1)觀察圖形,可以發(fā)現(xiàn)代數(shù)式可以因式分解為 ;

(2)若每塊小矩形的面積為10,四個正方形的面積和為58,試求圖中所有裁剪線(虛線部分)長之和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】五一期間,某商鋪經(jīng)營某種旅游紀念品.該商鋪第一次批發(fā)購進該紀念品共花費3 000元,很快全部售完.接著,該商鋪第二次批發(fā)購進該紀念品共花費9000元.已知第二次所購進該紀念品的數(shù)量是第一次的2倍還多300個,第二次的進價比第一次的進價提高了20%.

(1)求第一次購進該紀念品的進價是多少元?

(2)若該紀念品的兩次售價均為9/個,兩次所購紀念品全部售完后,求該商鋪兩次共盈利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A的坐標是(0,3),點B的坐標是(﹣4,0),將△AOB繞點A逆時針旋轉(zhuǎn)90°得到△AEF,點O、B的對應點分別是點E、F.

(1)請在圖中畫出△AEF.

(2)請在x軸上找一個點P,使PA+PE的值最小,并直接寫出P點的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】企業(yè)舉行愛心一日捐活動,捐款金額分為五個檔次,分別是50元,100元,150元,200元,300元.宣傳小組隨機抽取部分捐款職工并統(tǒng)計了他們的捐款金額,繪制成兩個不完整的統(tǒng)計圖,請結(jié)合圖表中的信息解答下列問題:

1)宣傳小組抽取的捐款人數(shù)為_____人,請補全條形統(tǒng)計圖;

2)在扇形統(tǒng)計圖中,求100元所對應扇形的圓心角的度數(shù);

3)已知該企業(yè)共有500人參與本次捐款,請你估計捐款總額大約為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣ x+m(m>0)與x軸交于點C,與y軸交于點D,以CD為邊作矩形ANCD,點A在x軸上.雙曲線y= 經(jīng)過點B,與直線CD交于點E,則點E的坐標為(
A.( ,﹣
B.(4,﹣
C.( ,﹣
D.(6,﹣1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把矩形紙片ABCD沿對角線折疊,設(shè)重疊部分為EBD,那么下列說法錯誤的是( 。

A. EBD是等腰三角形,EB=ED B. 折疊后ABE和C′BD一定相等

C. 折疊后得到的圖形是軸對稱圖形 D. EBA和EDC′一定是全等三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式組 ,并將不等式組的解集在數(shù)軸上表示出來.

查看答案和解析>>

同步練習冊答案