【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=與直線交于A、B,直線AB交于y軸于點(diǎn)C,點(diǎn)P為線段OB上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O、B重合),當(dāng)△OPC為等腰三角形時(shí),點(diǎn)P的坐標(biāo):_______.
【答案】
【解析】
根據(jù)解方程組,可得B點(diǎn)坐標(biāo),根據(jù)自變量與函數(shù)值的對(duì)應(yīng)關(guān)系,可得C點(diǎn)坐標(biāo),根據(jù)等腰三角形的判定,可得關(guān)于x的方程,根據(jù)解方程,可得答案.
聯(lián)立拋物線與直線,得
,
解得, ,
即B(3,3).
當(dāng)x=0時(shí),y= ,即C(0, ).
設(shè)OB的解析式為y=kx,將B點(diǎn)坐標(biāo)代入,得
3k=3,解得k=1,
即OB的解析式為y=x,
設(shè)P點(diǎn)坐標(biāo)為(x,x),
當(dāng)OP=OC時(shí), .
解得x= (不符合題意,舍),x= ,y=x= ,P1(,);
當(dāng)OP=CP時(shí), + =+,
解得x= ,y=x=, (,);
當(dāng)OC=CP時(shí), +=,
解得x=0(不符合題意,舍),x=,y=x=,P3(,),
綜上所述:P1(,),P2(,),P3(,),
故答案為:P1(,),P2(,),P3(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABO中,OA=OB,C是邊AB的中點(diǎn),以O為圓心的圓過(guò)點(diǎn)C.
(1)求證:AB與⊙O相切;
(2)若∠AOB=120°,AB=,求⊙O的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,,,把繞著它的斜邊中點(diǎn)逆時(shí)針旋轉(zhuǎn)至的位置,交于點(diǎn).與重疊部分的面積為 .
A. 8 B. 9 C. 10 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示,已知函數(shù)y= (x>0)圖象上一點(diǎn)P,PA⊥x軸于點(diǎn)A(a,0),點(diǎn)B坐標(biāo)為(0,b)(b>0).動(dòng)點(diǎn)M是y軸正半軸上點(diǎn)B上方的點(diǎn).動(dòng)點(diǎn)N在射線AP上,過(guò)點(diǎn)B作AB的垂線,交射線AP于點(diǎn)D.交直線MN于點(diǎn)Q.連接AQ.取AQ的中點(diǎn)C.
(1)如圖2,連接BP,求△PAB的面積;
(2)當(dāng)點(diǎn)Q在線段BD上時(shí),若四邊形BQNC是菱形,面積為2 ,求此時(shí)P點(diǎn)的坐標(biāo);
(3)在(2)的條件下,在平面直角坐標(biāo)系中是否存在點(diǎn)S,使得以點(diǎn)D、Q、N、S為項(xiàng)點(diǎn)的四邊形為平行四邊形?如果存在,請(qǐng)直接寫出所有的點(diǎn)S的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在截面為半圓形的水槽內(nèi)裝有一些水,如圖水面寬AB為6分米,如果再注入一些水后,水面上升1分米,此時(shí)水面寬度變?yōu)?/span>8分米。則該水槽截面半徑為( )
A. 3分米 B. 4分米 C. 5分米 D. 10分米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列文字與例題,并解答。
將一個(gè)多項(xiàng)式分組進(jìn)行因式分解后,可用提公因式法或公式法繼續(xù)分解的方法稱作分組分解法。例如:以下式子的分解因式的方法叉稱為分組分解法。
(1)試用“分組分解法”分解因式:
(2)已知四個(gè)實(shí)數(shù)a,b,c,d滿足。并且,,,同時(shí)成立。
①當(dāng)k=1時(shí),求a+c的值;
②當(dāng)k≠0時(shí),用含a的代數(shù)式分別表示b、c、d。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2-x+c(a≠0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,-2),已知B點(diǎn)坐標(biāo)為(4,0)
(1)求拋物線的解析式;
(2)試探究△ABC的外接圓的圓心位置,并求出圓心坐標(biāo);
(3)若點(diǎn)M是線段BC下方的拋物線上一點(diǎn),記點(diǎn)M到線段BC的距離為d,當(dāng)d取最大值時(shí),求出此時(shí)M點(diǎn)的坐標(biāo);
(4)若點(diǎn)P是拋物線上一點(diǎn),點(diǎn)E是直線y=-x+1上的動(dòng)點(diǎn),是否存在點(diǎn)P、E,使以點(diǎn)A,點(diǎn)B,點(diǎn)P,點(diǎn)E為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)E坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若所求的二次函數(shù)圖象與拋物線有相同的頂點(diǎn),并且在對(duì)稱軸的左側(cè),隨的增大而增大,在對(duì)稱軸的右側(cè),隨的增大而減小,則所求二次函數(shù)的解析式為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分線BE交AC的延長(zhǎng)線于點(diǎn)E.
(1)求∠CBE的度數(shù);
(2)過(guò)點(diǎn)D作DF∥BE,交AC的延長(zhǎng)線于點(diǎn)F,求∠F的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com