【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線交于點(diǎn)O,過(guò)O點(diǎn)作EF∥BC,交AB于E,交AC于F.
(1)判斷△BEO的形狀,并說(shuō)明理由.
(2)若AB=5cm,AC=4cm,求△AEF的周長(zhǎng).
【答案】(1)△BEO是等腰三角形,理由見(jiàn)解析;(2)9cm
【解析】試題分析:(1)根據(jù)角平分線的性質(zhì),可得∠EBO=∠CBO,根據(jù)平行線的性質(zhì),可得∠EOB=∠CBO,根據(jù)等腰三角形的判定即可得到結(jié)論;
(2)根據(jù)角平分線的性質(zhì),可得∠EBO與CBO,∠FOC與∠FCO的關(guān)系,根據(jù)平行線的性質(zhì),可得∠EOB與∠CBO,∠FOC與∠BCO的關(guān)系,根據(jù)等腰三角形的判定,可得BE與EO,CF與FO的關(guān)系,根據(jù)線段的和差,可得答案.
試題解析:(1)△BEO是等腰三角形,理由如下:
∵EF∥BC
∴∠OBC=∠EOB
∵BO是∠ABC的平分線
∴∠OBC=∠OBE
∴∠OBE=∠EOB
∴△BEO是等腰三角形;
(2)由(1)知:△BEO是等腰三角形 ∴EB=EO
同理可證:△CFO是等腰三角形 ∴FC=FO
∴△AEF的周長(zhǎng)=AE+EF+ AF
= AE +EO+OF+AF
= AE +EB+CF+AF
=AB+AC
=5+4
=9
即△AEF的周長(zhǎng)為9cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=kx+b 的圖象與反比例函數(shù)y=的圖交象于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是-2 , 求:
(1)一次函數(shù)的解析式;
(2)△AOB的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點(diǎn)C的坐標(biāo)為(1,0),頂點(diǎn)A的坐標(biāo)為(0,2),頂點(diǎn)B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當(dāng)頂點(diǎn)A恰好落在該雙曲線上時(shí)停止運(yùn)動(dòng),則此時(shí)點(diǎn)C的對(duì)應(yīng)點(diǎn)C′的坐標(biāo)為( )
A. (,0) B. (2,0) C. (,0) D. (3,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(1,2),B(3,1),C(﹣2,﹣1).
(1)在圖中作出△ABC關(guān)于y軸對(duì)稱的△A1B1C1.
(2)寫(xiě)出A1,B1,C1的坐標(biāo),A1 ;B1 ;C1 .(直接寫(xiě)出答案)
(3)△A1B1C1的面積為 .(直接寫(xiě)出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A在函數(shù)圖像上,過(guò)點(diǎn)A作x軸和y軸的平行線分別交函數(shù)圖像于點(diǎn)B、C,直線BC與坐標(biāo)軸的交點(diǎn)為D、E.當(dāng)點(diǎn)A在函數(shù)圖像上運(yùn)動(dòng)時(shí),
(1)設(shè)點(diǎn)A橫坐標(biāo)為a,則點(diǎn)B的坐標(biāo)為 ,點(diǎn)C的坐標(biāo)為 (用含a的字母表示);
(2)△ABC的面積是否發(fā)生變化?若不變,求出△ABC的面積,若變化,請(qǐng)說(shuō)明理由;
(3)請(qǐng)直接寫(xiě)出BD與CE滿足的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C,D分別在兩個(gè)半圓上(不與點(diǎn)A、B重合),AD、BD的長(zhǎng)分別是關(guān)于x的方程=0的兩個(gè)實(shí)數(shù)根.
(1)求m的值;
(2)連接CD,試探索:AC、BC、CD三者之間的等量關(guān)系,并說(shuō)明理由;
(3)若CD=,求AC、BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖:在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形OABC是長(zhǎng)方形,點(diǎn)A、C、D的坐標(biāo)分別為A(9,0)、C(0,4),D(5,0),點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿O[Math Processing Error] C[Math Processing Error] B[Math Processing Error] A運(yùn)動(dòng),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=5時(shí), P點(diǎn)坐標(biāo)為____________;
(2)當(dāng)t>4時(shí),OP+PD有最小值嗎?如果有,請(qǐng)算出該最小值,如果沒(méi)有,請(qǐng)說(shuō)明理由;
(3)當(dāng)t為何值時(shí),△ODP是腰長(zhǎng)為5的等腰三角形?(直接寫(xiě)出t的值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖的方格中,每個(gè)小正方形的邊長(zhǎng)都為1,△ABC的頂點(diǎn)均在格點(diǎn)上.在建立平面直角坐標(biāo)系后,點(diǎn)B的坐標(biāo)為(﹣1,2).
(1)把△ABC向下平移8個(gè)單位后得到對(duì)應(yīng)的△A1B1C1,畫(huà)出△A1B1C1;
(2)畫(huà)出與△A1B1C1關(guān)于y軸對(duì)稱的△A2B2C2;
(3)若點(diǎn)P(a,b)是△ABC邊上任意一點(diǎn),P2是△A2B2C2邊上與P對(duì)應(yīng)的點(diǎn),寫(xiě)出P2的坐標(biāo)為 ;
(4)試在y軸上找一點(diǎn)Q(在圖中標(biāo)出來(lái)),使得點(diǎn)Q到B2、C2兩點(diǎn)的距離之和最小,并求出QB2+QC2的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com