【題目】如圖,學(xué)校準(zhǔn)備在教學(xué)樓后面搭建一簡易矩形自行車車棚,一邊利用教學(xué)樓的后墻(可利用的墻長為18m),另外三邊利用學(xué),,F(xiàn)有總長38m的鐵欄圍成.
(1)若圍成的面積為,試求出自行車車棚的長和寬;
(2)能圍成面積為的自行車車棚嗎?如果能,請你給出設(shè)計方案;如果不能,請說明理由.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+2x+m.
(1)如果二次函數(shù)的圖象與x軸有兩個交點,求m的取值范圍;
(2)如圖,二次函數(shù)的圖象過點A(3,0),交y軸于B,D是頂點,求△ABD的面積.
(3)在(2)的條件下,根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把兩個全等的等腰直角三角形ABC和EFG(其直角邊長均為4)疊放在一起(如圖①),且使三角板EFG的直角頂點G與三角板ABC的斜邊中點O重合.現(xiàn)將三角板EFG繞O點順時針旋轉(zhuǎn)(旋轉(zhuǎn)角α滿足條件:0°<α<90°),四邊形CHGK是旋轉(zhuǎn)過程中兩三角板的重疊部分(如圖②).
(1)在上述旋轉(zhuǎn)過程中,BH與CK有怎樣的數(shù)量關(guān)系四邊形CHGK的面積有何變化?證明你發(fā)現(xiàn)的結(jié)論;
(2)連接HK,在上述旋轉(zhuǎn)過程中,設(shè)BH=x,△GKH的面積為y,求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)在(2)的前提下,是否存在某一位置,使△GKH的面積恰好等于△ABC面積的?若存在,求出此時x的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC中,AB=AC,∠BAC=90°,D、E分別是AB、AC邊的中點.將△ABC繞點A順時針旋轉(zhuǎn)α角(0°<α<180°),得到△AB′C′(如圖②).
(1)探究DB′與EC′的數(shù)量關(guān)系,并給予證明;
(2)當(dāng)DB′∥AE時,求此時旋轉(zhuǎn)角α的度數(shù);
(3)如圖③,在旋轉(zhuǎn)過程中,設(shè)AC′與DE所在直線交于點P,當(dāng)△ADP成為等腰三角形時,求此時的旋轉(zhuǎn)角α的度數(shù).(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形中,,繞點順時針旋轉(zhuǎn),它的兩邊分別交(或它們的延長線)于點.
當(dāng)繞點旋轉(zhuǎn)到時(如圖1),易證.
(1)當(dāng)繞點旋轉(zhuǎn)到時(如圖2),線段和之間有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明.
(2)當(dāng)繞點旋轉(zhuǎn)到如圖3的位置時,線段和之間又有怎樣的數(shù)量關(guān)系?請直接寫出你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在10×10的正方形網(wǎng)格中(每個小正方形的邊長都為1個單位),△ABC的三個頂點都在格點上.建立如圖所示的直角坐標(biāo)系,
請在圖中標(biāo)出△ABC的外接圓的圓心P的位置,并填寫: 圓心P的坐標(biāo):P( , )
(2)將△ABC繞點A逆時針旋轉(zhuǎn)90°得到△ADE,畫出圖
形,并求△ABC掃過的圖形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線交x軸于A、B兩點,直線y=kx+b經(jīng)過點A,與這條拋物線的對稱軸交于點M(1,2),且點M與拋物線的頂點N關(guān)于x軸對稱.
(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)題中的拋物線與直線的另一交點為C,已知P(x,y)為線段AC上一點,過點P作PQ⊥x軸,交拋物線于點Q.求線段PQ的最大值及此時P坐標(biāo);
(3)在(2)的條件下,求△AQC面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一段拋物線:y=-x(x-3)(0≤x≤3),記為C1,它與x軸交于兩點O,A1;將C1繞A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2繞A2旋轉(zhuǎn)180°得到C3,交x軸于A3,過拋物線C1,C3頂點的直線與C1、C2、C3圍成的如圖中的陰影部分,那么該面積為_____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,點P從A出發(fā)沿AC向C點以1厘米/秒的速度勻速移動;點Q從C出發(fā)沿CB向B點以2厘米/秒的 速度勻速移動.點P、Q分別從起點同時出發(fā),移動到某一位置時所需時間為t秒.
(1)當(dāng)t= 時,PQ∥AB
(2)當(dāng)t為何值時,△PCQ的面積等于5cm2?
(3)在P、Q運(yùn)動過程中,在某一時刻,若將△PQC翻折,得到△EPQ,如圖2,PE與AB能否垂直?若能,求出相應(yīng)的t值;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com