【題目】下列調查中,適合采用全面調查(普查)方式的是(

A.對汀江流域水質情況的調查B.對端午節(jié)期間市場上粽子質量情況的調查

C.對某班名同學身高情況的調查D.對某類煙花爆竹燃放安全情況的調查

【答案】C

【解析】

調查方式的選擇需要將普查的局限性和抽樣調查的必要性結合起來,具體問題具體分析,普查結果準確,所以在要求精確、難度相對不大,實驗無破壞性的情況下應選擇普查方式,當考查的對象很多或考查會給被調查對象帶來損傷破壞,以及考查經費和時間都非常有限時,普查就受到限制,這時就應選擇抽樣調查.

解:A:對汀江流域水質情況的調查,由于范圍較大,適合用抽樣調查,故此選項錯誤;

B、對端午節(jié)期間市場上粽子質量情況的調查,數(shù)量較大,適合抽樣調查,故此選項錯誤;

C:對某班40名同學身高情況的調查,數(shù)量少,范圍小,采用全面調查,故此選項正確;

D:對某類煙花爆竹燃放安全情況的調查,具有破壞性,應選擇抽樣調查,故此選項錯誤;

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】四位同學在研究函數(shù)y=x2+bx+c(b,c是常數(shù))時,甲發(fā)現(xiàn)當x=1時,函數(shù)有最小值;乙發(fā)現(xiàn)﹣1是方程x2+bx+c=0的一個根;丙發(fā)現(xiàn)函數(shù)的最小值為3;丁發(fā)現(xiàn)當x=2時,y=4,已知這四位同學中只有一位發(fā)現(xiàn)的結論是錯誤的,則該同學是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 如圖,在ABC中,∠ACB=90°,AC=BC過點C的射線CF交邊AB于點FADCF于點D,BECF于點E,AD=3,BE=1

1)求證:ADC≌△CEB

2)求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校開展以“學習朱子文化,弘揚理學思想”為主題的讀書月活動,并向學生征集讀后感,學校將收到的讀后感篇數(shù)按年級進行統(tǒng)計,繪制了以下兩幅統(tǒng)計圖(不完整)

據(jù)圖中提供的信息完成以下問題

(1)扇形統(tǒng)計圖中“八年級”對應的圓心角是   °,并補全條形統(tǒng)計圖;

(2)經過評審,全校有4篇讀后感榮獲特等獎,其中有一篇來自七年級,學校準備從特等獎讀后感中任選兩篇在校廣播電臺上播出,請利用畫樹狀圖或列表的方法求出七年級特等獎讀后感被校廣播電臺播出的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知RtABC,∠BAC90°,BC5,AC2,以A為圓心、AB為半徑畫圓,與邊BC交于另一點D

1)求BD的長;

2)連接AD,求∠DAC的正弦值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在的正方形網格中,點AB,M,N都在格點上.從點M,N中任取一點,與點AB順次連接組成一個三角形,則下列事件是必然事件的是( )

A.所得三角形是銳角三角形B.所得三角形是直角三角形

C.所得三角形是鈍角三角形D.所得三角形是等腰三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:平面內,如果一個四邊形的四個頂點到某一點的距離都相等,則稱這一點為該四邊形的外心.

1)下列四邊形:平行四邊形、矩形、菱形中,一定有外心的是 ;

2)已知四邊形ABCD有外心O,且A,B,C三點的位置如圖1所示,請用尺規(guī)確定該四邊形的外心,并畫出一個滿足條件的四邊形ABCD;

3)如圖2,已知四邊形ABCD有外心O,且BC=8sinBDC=,求OC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:將矩形紙片ABCD折疊,使點A與點C重合(點D與D'為對應點),折痕為EF,連接AF.

(1)如圖1,求證:四邊形AECF為菱形;

(2)如圖2,若FC=2DF,連接AC交EF于點O,連接DO、D'O,在不添加任何輔助線的情況下,請直接寫出圖2中所有等邊三角形.

(圖1) (圖2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,某賓館大廳要鋪圓環(huán)形的地毯,工人師傅只測量了與小圓相切的大圓的弦AB的長,就計算出了圓環(huán)的面積,若測量得AB的長為20米,則圓環(huán)的面積為( )

A. 10平方米B. 10π平方米C. 100平方米D. 100π平方米

查看答案和解析>>

同步練習冊答案