【題目】在正方形 ABCD 中,M BC 邊上一點(diǎn),且點(diǎn) M 不與 B、C 重合,點(diǎn) P 在射線 AM 上,將線段 AP 繞點(diǎn) A 順時(shí)針旋轉(zhuǎn) 90°得到線段 AQ,連接BP,DQ.

(1)依題意補(bǔ)全圖 1;

(2)①連接 DP,若點(diǎn) P,Q,D 恰好在同一條直線上,求證:DP2+DQ2=2AB2;

若點(diǎn) P,Q,C 恰好在同一條直線上,則 BP AB 的數(shù)量關(guān)系為:

【答案】(1)詳見解析;(2)①詳見解析;②BP=AB.

【解析】

(1)根據(jù)要求畫出圖形即可;

(2)①連接BD,如圖2,只要證明ADQ≌△ABP,DPB=90°即可解決問題;

②結(jié)論:BP=AB,如圖3中,連接AC,延長(zhǎng)CDN,使得DN=CD,連接AN,QN.由ADQ≌△ABP,ANQ≌△ACP,推出DQ=PB,AQN=APC=45°,由∠AQP=45°,推出∠NQC=90°,由CD=DN,可得DQ=CD=DN=AB;

(1)解:補(bǔ)全圖形如圖 1:

(2)①證明:連接 BD,如圖 2,

∵線段 AP 繞點(diǎn) A 順時(shí)針旋轉(zhuǎn) 90°得到線段 AQ,

AQ=AP,QAP=90°,

∵四邊形 ABCD 是正方形,

AD=AB,DAB=90°,

∴∠1=2.

∴△ADQ≌△ABP,

DQ=BP,Q=3,

∵在 RtQAP 中,∠Q+QPA=90°,

∴∠BPD=3+QPA=90°,

∵在 RtBPD 中,DP2+BP2=BD2, 又∵DQ=BP,BD2=2AB2

DP2+DQ2=2AB2

②解:結(jié)論:BP=AB.

理由:如圖 3 中,連接 AC,延長(zhǎng) CD N,使得 DN=CD,連接 AN,QN.

∵△ADQ≌△ABP,ANQ≌△ACP,

DQ=PB,AQN=APC=45°,

∵∠AQP=45°,

∴∠NQC=90°,

CD=DN,

DQ=CD=DN=AB,

PB=AB.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程:

12xx+1)=2x+2

2x24x40

3x2x70

4)(x125x1)﹣60

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,BCO的切線,DO上的一點(diǎn),CDCB,延長(zhǎng)CDBA的延長(zhǎng)線于點(diǎn)E

1)求證:CDO的切線;

2)若OFBD于點(diǎn)F,且OF2,BD4,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點(diǎn)C落在斜邊AB上某一點(diǎn)D處,折痕為EF(點(diǎn)EF分別在邊AC、BC上)

1)若△CEF△ABC相似.

當(dāng)AC=BC=2時(shí),AD的長(zhǎng)為   ;

當(dāng)AC=3BC=4時(shí),AD的長(zhǎng)為   ;

2)當(dāng)點(diǎn)DAB的中點(diǎn)時(shí),△CEF△ABC相似嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:對(duì)于拋物線yax2+bx+ca、b、c是常數(shù),a≠0),若b2ac,則稱該拋物線為黃金拋物線.例如:yx2x+1是黃金拋物線

1)請(qǐng)?jiān)賹懗鲆粋(gè)與上例不同的黃金拋物線的解析式;

2)將黃金拋物線yx2x+1沿對(duì)稱軸向下平移3個(gè)單位

①直接寫出平移后的新拋物線的解析式;

②新拋物線如圖所示,與x軸交于ABAB的左側(cè)),與y軸交于C,點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn),連結(jié)PO、PC,并把△POC沿CO翻折,得到四邊形POPC,那么是否存在點(diǎn)P,使四邊形POPC為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

③當(dāng)直線BC下方的拋物線上動(dòng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形 OBPC的面積最大并求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形OBPC的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),菱形ABCD的頂點(diǎn)Bx軸的正半軸上,點(diǎn)A坐標(biāo)為(-4,0),點(diǎn)D的坐標(biāo)為(-1,4),反比例函數(shù)的圖象恰好經(jīng)過點(diǎn)C,則k的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】, ,,,點(diǎn)是斜邊的中點(diǎn),以點(diǎn)為頂點(diǎn)作,射線、分別交邊于點(diǎn)、.

特例

1)如圖1,若,不添加輔助線,圖1中所有與相似的三角形為 , ;

操作探究:

2)將(1)中的從圖1的位置開始繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn),得到,如圖2,當(dāng)射線,分別交邊于點(diǎn)時(shí),求的值;

拓展延伸:

3)如圖3中,,,,點(diǎn)是斜邊的中點(diǎn),以點(diǎn)為頂點(diǎn)作,射線、分別交邊、的延長(zhǎng)線于點(diǎn)、,則的值為 .(用含、的代數(shù)式表示,直接回答即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的對(duì)稱軸是直線x=1,與x軸有兩個(gè)交點(diǎn),與y軸交點(diǎn)的坐標(biāo)為(0,3),把它向下平移2個(gè)單位后,得到新的拋物線的解析式是y=ax2bxc,以下四個(gè)結(jié)論:①b24ac<0;②abc<0;③4a2bc=1;④abc>0,其中正確的是

A.①②③B.②③④C.①③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,∠BADαE為對(duì)角線AC上的一點(diǎn)(不與A,C重合)將射線EB繞點(diǎn)E順時(shí)針旋轉(zhuǎn)β角之后,所得射線與直線AD交于F點(diǎn).試探究線段EBEF的數(shù)量關(guān)系.

1)如圖1,當(dāng)αβ90°時(shí),EBEF的數(shù)量關(guān)系為   ;

2)如圖2,當(dāng)α60°β120°時(shí),

①依題意補(bǔ)全圖形;

②探究(1)的結(jié)論是否成立,若成立,請(qǐng)給出證明;若不成立,請(qǐng)舉出反例證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案