【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點D,過DDE⊥AC,垂足為E.

(1)證明:DE⊙O的切線;

(2)連接OE,若BC=8,求△OEC的面積.

【答案】(1)證明見解析;(2)S△OEC=2.

【解析】試題(1)由△ABC 是等腰三角形,可得CA=CB,則∠A = ∠B,又由OD=OB,可得∠ODB = ∠B,所以∠A = ∠ODB,即OD ∥AC,又OD⊥DE, AC⊥DE,所以DE是⊙O的切線繼而可證得結(jié)論;(2)連接DC.首先證△ODC為等邊三角形,再根據(jù)三角函數(shù)的性質(zhì),求得AD、CD、ED、AE、EC的長,然后求得S△OEC =OCEF.

∵OB=OD,

∴∠OBD=∠ODB.

∵∠A=∠B=30°

∴∠A=∠ODB,

∴DO∥AC

∵DE⊥AC

∴OD⊥DE.

∴DE⊙O的切線.

(2)連接DC.

∵∠OBD=∠ODB=30°,

∴∠DOC=60°.

∴△ODC為等邊三角形.

∴∠ODC=60°,

∴∠CDE=30°

∵BC=8,

∴DC=4,

∴CE=2.

過點EEF⊥BC,交BC的延長線于點F.

∵∠ECF=∠A+∠B=60°,

∴EF=CE·sin60°=2×=

∴S△OEC =OCEF=×4×=2.

故答案為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為響應(yīng)學雷鋒、樹新風、做文明中學生號召,某校開展了志愿者服務(wù)活動,活動項目有戒毒宣傳”、“文明交通崗”、“關(guān)愛老人”、“義務(wù)植樹”、“社區(qū)服務(wù)等五項,活動期間,隨機抽取了部分學生對志愿者服務(wù)情況進行調(diào)查,結(jié)果發(fā)現(xiàn),被調(diào)查的每名學生都參與了活動,最少的參與了1項,最多的參與了5項,根據(jù)調(diào)查結(jié)果繪制了如圖所示不完整的折線統(tǒng)計圖和扇形統(tǒng)計圖.

(1)被隨機抽取的學生共有多少名?

(2)在扇形統(tǒng)計圖中,求活動數(shù)為3項的學生所對應(yīng)的扇形圓心角的度數(shù),并補全折線統(tǒng)計圖;

(3)該校共有學生2000人,估計其中參與了4項或5項活動的學生共有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知中,厘米,厘米,點的中點.

1)如果點P在線段BC上以3厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.

①若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,是否全等,請說明理由;

②若點Q的運動速度與點P的運動速度不相等, 是否可能全等?若能,求出全等時點Q的運動速度和時間;若不能,請說明理由.

2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿三邊運動,求經(jīng)過多長時間點P與點Q第一次在的哪條邊上相遇?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在中,,,對角線,相交于點.是線段上一動點(不與重合),連接,以為邊在的右側(cè)作,且.

1)如圖①,若點落在線段上,則線段與線段的數(shù)量關(guān)系是______;

2)如圖②,若點不在線段上,(1)中的結(jié)論是否成立?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,一次函數(shù)y=kx+b(k,b都是常數(shù),且k0)的圖象經(jīng)過點(1,0)和(0,2).

(1)當﹣2x3時,求y的取值范圍;

(2)已知點P(m,n)在該函數(shù)的圖象上,且m﹣n=4,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠ADC=90°,AD=8mCD=6m,BC=24m,AB=26m,則圖中陰影部分的面積為_________;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于正整數(shù)a,我們規(guī)定:若a為奇數(shù),則fa)=3a+1;若a為偶數(shù),則fa)=.例如f15)=3×15+146,f8)=4,若a116,a2fa1),a3fa2),a4fa3),,依此規(guī)律進行下去,得到一列數(shù)a1,a2a3,a4,,an,n為正整數(shù)),則a1+a2+a3+…+a2018_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,某公司員工住在三個住宅區(qū),已知區(qū)有2人,區(qū)有7人,區(qū)有12人,三個住宅區(qū)在同一條直線上,且的中點.為方便員工,公司計劃開設(shè)通勤車免費接送員工上下班,但因為停車緊張,在四處只能設(shè)一個通勤車?奎c,為使所有員工步行到?奎c的路程之和最小,那么?空緫(yīng)設(shè)在(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】⑴ 閱讀理解

問題1:已知a、b、c、d為正數(shù),,ac=bd,試說明a=d,b=c.

我們通過構(gòu)造幾何模型解決代數(shù)問題. 注意到條件,如果把a、b、c、d分別看作為兩個直角三角形的直角邊,那么可構(gòu)造圖1所示的幾何模型.

∵ac=bd,

∴AB·CD=BC·AD

請你按照以上思路繼續(xù)完成說明.

⑵ 深入探究

問題2:若a>0,b>0,試比較的大小.

為此我們構(gòu)造圖2所示的幾何模型,其中AB為直徑, O為圓心,點C在半圓上,CD⊥AB 于D,AD=a,BD=b.

請你利用圖2所示的幾何模型解決提出的問題2

⑶ 拓展運用

對于函數(shù)y=x+,求當x>0時,求y的取值范圍.

查看答案和解析>>

同步練習冊答案