【題目】直線y=kx+k(k為正整數(shù))與坐標(biāo)軸所構(gòu)成的直角三角形的面積為Sk , 當(dāng)k分別為1,2,3,…,199,200時(shí),則S1+S2+S3+…+S199+S200=( 。
A.10000
B.10050
C.10100
D.10150

【答案】B
【解析】解:∵令x=0,則y=k;令y=0,則x=﹣1,
∴直線y=kx+k(k為正整數(shù))與坐標(biāo)軸所構(gòu)成的直角三角形的面積為Sk= ,
∴當(dāng)k=1時(shí),S1= ;
當(dāng)k=2時(shí),S2= ;
當(dāng)k=3時(shí),S3= ;

當(dāng)k=199時(shí),S199=
當(dāng)k=200時(shí),S200= ,
∴S1+S2+S3+…+S199+S200= + + +…+ + = = =10050.
故選B.
【考點(diǎn)精析】關(guān)于本題考查的數(shù)與式的規(guī)律,需要了解先從圖形上尋找規(guī)律,然后驗(yàn)證規(guī)律,應(yīng)用規(guī)律,即數(shù)形結(jié)合尋找規(guī)律才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線 l1 經(jīng)過(guò)點(diǎn) A(5,0)和點(diǎn) B(,﹣5)

(1)求直線 l1 的表達(dá)式;

(2)設(shè)直線 l2 的解析式為 y=﹣2x+2,且 l2 x 軸交于點(diǎn) D,直線 l1 l2 于點(diǎn) C, △CAD 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖示,AB∥CD,且點(diǎn)E在射線ABCD之間,請(qǐng)說(shuō)明∠AEC=∠A+∠C的理由.

(2)現(xiàn)在如圖b示,仍有AB∥CD,但點(diǎn)EABCD的上方,請(qǐng)嘗試探索∠1,∠2,∠E三者的數(shù)量關(guān)系. ②請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為提倡全民健身活動(dòng), 某社區(qū)準(zhǔn)備購(gòu)買(mǎi)羽毛球和羽毛球拍供社區(qū)居民使用, 某體育用品商店羽毛球每盒 10 元, 羽毛球拍每副 40 .該商店有兩種優(yōu)惠方案,方案一: 不購(gòu)買(mǎi)會(huì)員卡時(shí), 羽毛球享受 8.5 折優(yōu)惠, 羽毛球拍購(gòu)買(mǎi) 5 副(含5 副) 以上才能享受 8.5 折優(yōu)惠, 5 副以下必須按定價(jià)購(gòu)買(mǎi);方案二: 每張會(huì)員卡 20 元, 辦理會(huì)員卡時(shí), 全部商品享受 8 折優(yōu)惠設(shè)該社區(qū)準(zhǔn)備購(gòu)買(mǎi)羽毛球拍 6 副, 羽毛球盒, 請(qǐng)回答下列問(wèn)題:

(1)如果一位體育愛(ài)好者按方案一只購(gòu)買(mǎi)了 4 副羽毛球拍,求他購(gòu)買(mǎi)時(shí)所需要的費(fèi)用;

(2)用含的代數(shù)式分別表示該社區(qū)按方案一和方案二購(gòu)買(mǎi)所需要的錢(qián)數(shù);

(3)①直接寫(xiě)出一個(gè)的值, 使方案一比方案二優(yōu)惠;

直接寫(xiě)出一個(gè)的值, 使方案二比方案一優(yōu)惠

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC≌△ADE,且∠CAD10°,∠B∠D25°,∠EAB120°,試求∠DFB∠DGB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)要求畫(huà)圖,并回答問(wèn)題.

已知:直線AB,CD相交于點(diǎn)O,且OEAB

(1)過(guò)點(diǎn)O畫(huà)直線MNCD;

(2)若點(diǎn)F(1)中所畫(huà)直線MN上任意一點(diǎn)(O點(diǎn)除外),若AOC=35°,求EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O,OE是∠AOD的平分線,若∠AOC=60°,OFOE

(1)判斷OF把∠AOC所分成的兩個(gè)角的大小關(guān)系并證明你的結(jié)論;

(2)求∠BOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A、B、C、D分別在正方形網(wǎng)格的格點(diǎn)上,其中A點(diǎn)的坐標(biāo)為(﹣1,5),B點(diǎn)的坐標(biāo)為(3,3),小明發(fā)現(xiàn),線段AB與線段CD存在一種特殊關(guān)系,即其中一條線段繞著某點(diǎn)旋轉(zhuǎn)一個(gè)角度可以得到另一條線段,則這個(gè)旋轉(zhuǎn)中心的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)y=kx﹣k與反比例函數(shù) 在同一直角坐標(biāo)系中的大致圖象是( 。
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案