如圖,在平面直角坐標(biāo)系中,直線軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過三點(diǎn).

(1)求過三點(diǎn)拋物線的解析式并求出頂點(diǎn)的坐標(biāo);

(2)在拋物線上是否存在點(diǎn),使為直角三角形,若存在,直接寫出點(diǎn)坐標(biāo);若不存在,請說明理由;

(3)試探究在直線上是否存在一點(diǎn),使得的周長最小,若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

解:(1)直線軸交于點(diǎn),與軸交于點(diǎn)

點(diǎn)都在拋物線上,

  

拋物線的解析式為

頂點(diǎn)

(2)存在

(3)存在

理由:

解法一:

延長到點(diǎn),使,連接交直線于點(diǎn),則點(diǎn)就是所求的點(diǎn).

過點(diǎn)于點(diǎn)

點(diǎn)在拋物線上,

中,

,,

中,,

,

設(shè)直線的解析式為

   解得

   解得 

在直線上存在點(diǎn),使得的周長最小,此時(shí)

解法二:

過點(diǎn)的垂線交軸于點(diǎn),則點(diǎn)為點(diǎn)關(guān)于直線的對稱點(diǎn).

連接于點(diǎn),則點(diǎn)即為所求.

過點(diǎn)軸于點(diǎn),則,

,

同方法一可求得

中,,,可求得,

為線段的垂直平分線,可證得為等邊三角形,

垂直平分

即點(diǎn)為點(diǎn)關(guān)于的對稱點(diǎn).

設(shè)直線的解析式為,由題意得

   解得

   解得 

在直線上存在點(diǎn),使得的周長最小,此時(shí)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案