【題目】如圖,△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB,DE⊥AB于點(diǎn)E,連接CE交AD于點(diǎn)H,則圖中的等腰三角形有( )

A.5個(gè)
B.4個(gè)
C.3個(gè)
D.2個(gè)

【答案】B
【解析】解:∵∠ACB=90°,∠B=30°,

∴∠BAC=60°,

∵AD是角平分線,

∴∠CAD=∠BAD=30°,

∴AD=BD.

∴△ABD是等腰三角形.

∵AD是角平分線,∠ACB=90°,DE⊥AB,

∴CD=ED

∴AC=AE

∴△CDE、△ACE是等腰三角形;

又△CEB也是等腰三角形

顯然此圖中有4個(gè)等腰三角形.

故答案為:B.

根據(jù)三角形內(nèi)角和定理求出∠BAC的度數(shù),由AD是角平分線,得到∠CAD=∠BAD,根據(jù)等角對(duì)等邊,得到△ABD是等腰三角形;根據(jù)角平分線上的點(diǎn)到角兩邊的距離相等,得到△CDE、△ACE是等腰三角形;再加上△CEB也是等腰三角形,得到圖中有4個(gè)等腰三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正六邊形從一個(gè)頂點(diǎn)出發(fā)可以畫_____條對(duì)角線,這些對(duì)角線把正六邊形分割成_____個(gè)三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是O的直徑,弦CD與直徑AB相交于點(diǎn)F.點(diǎn)E在O外,做直線AE,且EAC=D.

(1)求證:直線AE是O的切線.

(2)若BAC=30°,BC=4,cosBAD=,CF=,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與y軸相交于點(diǎn)A(0,3),與x正半軸相交于點(diǎn)B,對(duì)稱軸是直線x=1.

(1)求此拋物線的解析式以及點(diǎn)B的坐標(biāo).

(2)動(dòng)點(diǎn)M從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿x軸正方向運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)O出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿y軸正方向運(yùn)動(dòng),當(dāng)N點(diǎn)到達(dá)A點(diǎn)時(shí),M、N同時(shí)停止運(yùn)動(dòng).過動(dòng)點(diǎn)M作x軸的垂線交線段AB于點(diǎn)Q,交拋物線于點(diǎn)P,設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

當(dāng)t為何值時(shí),四邊形OMPN為矩形.

當(dāng)t0時(shí),BOQ能否為等腰三角形?若能,求出t的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3x(2x﹣1)﹣(x+3)(x﹣3)=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC.

(1)利用直尺和圓規(guī),按照下列要求作圖(保留作圖痕跡,不要求寫作法)
①作∠ABC的平分線BD交AC于點(diǎn)D;
②作線段BD的垂直平分線分別交AB、BC于點(diǎn)E、F.
(2)連接DE,請(qǐng)判斷線段DE與線段BF的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD⊥BC于點(diǎn)D,D為BC的中點(diǎn),連接AB,∠ABC的平分線交AD于點(diǎn)O,連接OC,若∠AOC=130°,則∠ABC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解我市中學(xué)生參加“科普知識(shí)”競(jìng)賽成績(jī)的情況,隨機(jī)抽查了部分參賽學(xué)生的成績(jī),整理并制作出如下的統(tǒng)計(jì)表和統(tǒng)計(jì)圖,如圖所示.請(qǐng)根據(jù)圖表信息解答下列問題:

(1)在表中:m= ,n= ;

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)小明的成績(jī)是所有被抽查學(xué)生成績(jī)的中位數(shù),據(jù)此推斷他的成績(jī)?cè)?/span> 組;

(4)4個(gè)小組每組推薦1人,然后從4人中隨機(jī)抽取2人參加頒獎(jiǎng)典禮,恰好抽中A、C兩組學(xué)生的概率是多少?并列表或畫樹狀圖說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于a,b的多項(xiàng)式3(a22abb2)(a2+mab+2b2)不含ab項(xiàng),則m的值是( )

A. 4B. 0C. 6D. 8

查看答案和解析>>

同步練習(xí)冊(cè)答案