【題目】如圖,在平面直角坐標(biāo)系 xOy中,反比例函數(shù) y x 0 的圖象經(jīng)過點 A2,3 ,直線y ax , y 與反比例函數(shù) y x 0 分別交于點 B,C兩點.
(1)直接寫出 k 的值 ;
(2)由線段 OB,OC和函數(shù) y x 0 在 B,C 之間的部分圍成的區(qū)域(不含邊界)為 W.
① 當(dāng) A點與 B點重合時,直接寫出區(qū)域 W 內(nèi)的整點個數(shù) ;
② 若區(qū)域 W內(nèi)恰有 8個整點,結(jié)合函數(shù)圖象,直接寫出 a的取值范圍 .
【答案】(1)6;(2)①2;②.
【解析】
(1)將點A代入y 可得值;
()①由A點與 B點重合可知B點坐標(biāo),代入可得值,易知y 與點C坐標(biāo),畫出圖像即可確定區(qū)域 W 內(nèi)的整點個數(shù);
②確定區(qū)域內(nèi)的8個整點,畫出函數(shù)圖像,由此可確定a的取值范圍.
解:(1)將點代入y 得,解得,
所以k 的值為6;
(2)①由A點與 B點重合可知B點坐標(biāo)為,代入得,解得,
,
聯(lián)立,解得或(舍去)
將代入得,
畫出圖像,如圖所示,
由圖像可得區(qū)域 W 內(nèi)的整點為,其個數(shù)為2個;
②如圖所示,8個整點為,
當(dāng)過點時,,
當(dāng)過點時,,
由圖像可得時,區(qū)域 W內(nèi)恰有 8個整點.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形ABCD,等腰直角三角板的直角頂點落在正方形的頂點D處,使三角板繞點D旋轉(zhuǎn).
(1)當(dāng)三角板旋轉(zhuǎn)到圖1的位置時,猜想CE與AF的數(shù)量關(guān)系,并加以證明;
(2)在(1)的條件下,若,求∠AED的度數(shù);
(3)若BC=4,點M是邊AB的中點,連結(jié)DM,DM與AC交于點O,當(dāng)三角板的邊DF與邊DM重合時(如圖2),若,求DN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,是的角平分線.以為圓心,為半徑作.
(1)求證:是的切線;
(2)已知交于點,延長交于點,,求的值.
(3)在(2)的條件下,設(shè)的半徑為,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,AB=6,BC=8,點E是對角線BD的中點,直角∠GEF的兩直角邊EF、EG分別交CD、BC于點F、G.
(1)若點F是邊CD的中點,求EG的長;
(2)當(dāng)直角∠GEF繞直角頂點E旋轉(zhuǎn),旋轉(zhuǎn)過程中與邊CD、BC交于點F、G.∠EFG的大小是否發(fā)生變化?如果變化,請說明理由;如果不變,請求出tan∠EFG的值;
(3)如圖3,連接CE交FG于點H,若,請求出CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2-4ax+c(a≠0)與y軸交于點A,將點A向右平移2個單位長度,得到點B.直線與x軸,y軸分別交于點C,D.
(1)求拋物線的對稱軸.
(2)若點A與點D關(guān)于x軸對稱.
①求點B的坐標(biāo).
②若拋物線與線段BC恰有一個公共點,結(jié)合函數(shù)圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以四邊形的邊為斜邊分別向外側(cè)作等腰直角三角形,直角頂點分別為順次連接這四個點,得四邊形.
(1)如(圖1).當(dāng)四邊形為正方形時,我們發(fā)現(xiàn)四邊形是正方形;如(圖2),當(dāng)四邊形為矩形時,請判斷:四邊形的形狀(不要求證明);
(2)如(圖3),當(dāng)四邊形為一般平行四邊形時 ,設(shè)
①試用含的代數(shù)式表示;
②求證:四邊形是正方形,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)實踐活動中,觀測小組對某品牌節(jié)能飲水機進行了觀察和記錄,當(dāng)觀察到第分鐘時,水溫為,記錄的相關(guān)數(shù)據(jù)如下表所示:
第一次加熱、降溫過程 | … | |||||||||||
t(分鐘) | 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | … |
y() | 20 | 40 | 60 | 80 | 100 | 80 | 66.7 | 57.1 | 50 | 44.4 | 40 | … |
(飲水機功能說明:水溫加熱到時飲水機停止加熱,水溫開始下降,當(dāng)降到時飲水機又自動開始加熱)
請根據(jù)上述信息解決下列問題:
(1)根據(jù)表中數(shù)據(jù)在如給出的坐標(biāo)系中,描出相應(yīng)的點;
(2)選擇適當(dāng)?shù)暮瘮?shù),分別求出第一次加熱過程和第一次降溫過程關(guān)于的函數(shù)關(guān)系式,并寫出相應(yīng)自變量的取值范圍;
(3)已知沏茶的最佳水溫是,若18:00開啟飲水機(初始水溫)到當(dāng)晚20:10,沏茶的最佳水溫時間共有多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,⊙O是△ABC的外接圓,點D是上一點,過點C作⊙O的切線PC,直線PC交BA的延長線于點P,交BD的延長線于點E.
(1)求證:∠PCA=∠PBC;
(2)若PC=8,PA=4,∠ECD=∠PCA,以點C為圓心,半徑為5作⊙C,試判斷⊙C與直線BD的位置關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點為點.
(1)求證:不論為何實數(shù),該拋物線與軸總有兩個不同的交點;
(2)若拋物線的對稱軸為直線,求的值和點坐標(biāo);
(3)如圖,直線與(2)中的拋物線并于兩點,并與它的對稱軸交于點,直線交直線于點,交拋物線于點.求當(dāng)為何值時,以為頂點的四邊形為平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com