【題目】對于任意有理數(shù)a,b,
定義運(yùn)算:a⊙b=a(a+b)﹣1,等式右邊是通常的加法、減法、乘法運(yùn)算.例如,2⊙5=2(2+5)﹣1=13.
(Ⅰ)求[1⊙(﹣2)]⊙3的值;
(Ⅱ)對于任意有理教m,n請你重新定義一種運(yùn)算“⊕”,使得5⊕3=20,寫出你定義的運(yùn)算:m⊕n=_____.(用含m,n的式子表示)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,G為BC邊上一點(diǎn),BE⊥AG于E,DF⊥AG于F,連接DE.
(1)求證:△ABE≌△DAF;
(2)若AF=1,四邊形ABED的面積為6,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1=∠2,∠A=∠F,求證:∠C=∠D.請閱讀下面的解答過程,并填空(理由或數(shù)學(xué)式)
證明:∵∠1=∠2(已知)∠1=∠3(_______)
∴∠2=∠3(等量代換)
∴BD∥_____(_______)
∴∠4=_____(_______)
又∵∠A=∠F(已知)
∴AC∥_____(_______)
∴∠4=_____(_______)
∴∠C=∠D(等量代換)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將長方形紙片向右上方翻折,使得點(diǎn)和點(diǎn)重合,畫出折痕以及翻折后的圖形,折痕與長方形的邊、分別交于點(diǎn)、,判斷重疊部分圖形的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,EF∥CD,DE∥BC.
(1)求證:AF:FD=AD:DB;
(2)若AB=15,AD:BD=2:1,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘.在整個(gè)步行過程中,甲、乙兩人的距離(米)與甲出發(fā)的時(shí)間(分)之間的關(guān)系如圖所示,下列結(jié)論:①甲步行的速度為60米/分;②乙用16分鐘追上甲;③乙走完全程用了30分鐘;④乙到達(dá)終點(diǎn)時(shí)甲離終點(diǎn)還有360米.其中正確的結(jié)論有( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知連接A.B兩地之間的公路長為600千米,甲開車從A地出發(fā)沿著此公路以100千米/小時(shí)的速度前往B地,乙騎自行車從B地出發(fā)沿此公路勻速前往A地.已知乙比甲晚出發(fā)1小時(shí),乙出發(fā)4小時(shí)后與甲第一次相遇,當(dāng)甲到達(dá)B地侯立即原路原速返回.若乙第二次與甲相遇時(shí)乙共騎行了m千米,則m=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級兩個(gè)班各選派10名學(xué)生參加“垃圾分類知識競賽,各參賽選手的成績?nèi)缦拢?/span>
八(1)班:88,91,92,93,93,93,94,98,98,100;
八(2)班:89,93,93,93,95,96,96,98,98,99
通過整理,得到數(shù)據(jù)分析表如下
班級 | 最高分 | 平均分 | 中位數(shù) | 眾數(shù) | 方差 |
八(1)班 | 100 | 93 | 93 | 12 | |
八(2)班 | 99 | 95 | 8.4 |
(1)求表中,,的值;
(2)依據(jù)數(shù)據(jù)分析表,有同學(xué)認(rèn)為最高分在(1)班,(1)班的成績比(2)班好.但也有同學(xué)認(rèn)為(2)班的成績更好.請你寫出兩條支持八(2)班成績更好的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,∠BAD=60°,AC與BD交于點(diǎn)O,E為CD延長線上的一點(diǎn),且CD=DE,連接BE,分別交AC、AD于點(diǎn)F、G,連接OG,則下列結(jié)論:①OG=AB;②圖中與△EGD全等的三角形共有5個(gè);③以點(diǎn)A、B、D、E為項(xiàng)點(diǎn)的四邊形是菱形;④S四邊形ODGF=S△ABF.其中正確的結(jié)論是( )
A. ①③B. ①③④C. ①②③D. ②②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com