【題目】小剛很擅長(zhǎng)球類運(yùn)動(dòng),課外活動(dòng)時(shí),足球隊(duì)、籃球隊(duì)都力邀他到自己的陣營(yíng),小剛左右為難,最后決定通過擲硬幣來(lái)確定。游戲規(guī)則如下:連續(xù)拋擲硬幣三次,如果三次正面朝上或三次反面朝上,則由小剛?cè)我馓暨x兩球隊(duì);如果兩次正面朝上一次正面朝下,則小剛加入足球陣營(yíng);如果兩次反面朝上一次反面朝下,則小剛加入籃球陣營(yíng)。
(1)用畫樹狀圖的方法表示三次拋擲硬幣的所有結(jié)果。
(2)小剛?cè)我馓暨x兩球隊(duì)的概率有多大?
(3)這個(gè)游戲規(guī)則對(duì)兩個(gè)球隊(duì)是否公平?為什么?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,的頂點(diǎn)A(0,3),B(b,0),C(c,0)在x軸上,若。
(1)請(qǐng)判斷的形狀并予以證明;
(2)如圖,過AB上一點(diǎn)D作射線交y軸負(fù)半軸與點(diǎn)E,連CD交y軸與F點(diǎn)。若BD=FD,求度數(shù)。
(3)在(2)的條件下,,H是AB延長(zhǎng)線上一動(dòng)點(diǎn),作,HG交射線DE于點(diǎn)G點(diǎn),則的值是否變化?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求出該值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)新進(jìn)一批A、B兩種型號(hào)的節(jié)能防近視臺(tái)燈,每臺(tái)進(jìn)價(jià)分別為200元、170元,近兩周的銷售情況如下:
銷售時(shí)段 | 銷售數(shù)量 | 銷售收入 | |
A種型號(hào) | B種型號(hào) | ||
第一周 | 3臺(tái) | 5臺(tái) | 1800元 |
第二周 | 4臺(tái) | 10臺(tái) | 3100元 |
進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)銷售收入進(jìn)貨成本
求A、B兩種型號(hào)的臺(tái)燈的銷售單價(jià);
若該商場(chǎng)準(zhǔn)備用不多于5400元的金額再購(gòu)進(jìn)這兩種型號(hào)的臺(tái)燈共30臺(tái),求A種型號(hào)的臺(tái)燈最多能購(gòu)進(jìn)多少臺(tái)?
在的條件下,能否求出該商場(chǎng)銷售完這30臺(tái)臺(tái)燈所獲得的最大利潤(rùn)若能,求出最大利潤(rùn);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的袋中裝有20個(gè)只有顏色不同的球,其中5個(gè)黃球,8個(gè)黑球,7個(gè)紅球.
(1)求從袋中摸出一個(gè)球是黃球的概率;
(2)現(xiàn)從袋中取出若干個(gè)黑球,攪勻后,使從袋中摸出一個(gè)黑球的概率是,求從袋中取出黑球的個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程mx2-2x+1=0.
(1)若方程有兩個(gè)實(shí)數(shù)根,求m的取值范圍;
(2)若方程的兩個(gè)實(shí)數(shù)根為x1,x2,且x1x2-x1-x2=,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)(m≠0)的圖象交于A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)A的坐標(biāo)為(n,6),點(diǎn)C的坐標(biāo)為(﹣2,0),且tan∠ACO=2.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問題背景:在△ABC中,∠B=2∠C,點(diǎn)D為線段BC上一動(dòng)點(diǎn),當(dāng)AD滿足某種條件時(shí),探討在線段AB、BD、CD、AC四條線段中,某兩條或某三條線段之間存在的數(shù)量關(guān)系.
例如:在圖1中,當(dāng)AB=AD時(shí),可證得AB=DC,現(xiàn)在繼續(xù)探索:
任務(wù)要求:
(1)當(dāng)AD⊥BC時(shí),如圖2,求證:AB+BD=DC;
(2)當(dāng)AD是∠BAC的角平分線時(shí),判斷AB、BD、AC的數(shù)量關(guān)系,并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AC是⊙O的直徑,B為⊙O上一點(diǎn),D為的中點(diǎn),過D作EF∥BC交AB的延長(zhǎng)線于點(diǎn)E,交AC的延長(zhǎng)線于點(diǎn)F.
(Ⅰ)求證:EF為⊙O的切線;
(Ⅱ)若AB=2,∠BDC=2∠A,求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com