【題目】已知:如圖,ABC中,∠ACB90°D在斜邊AB上,DEACDFBC,垂足分別為EF

1)當(dāng)∠ACD=∠BCD時(shí),求證:四邊形DECF是正方形;

2)當(dāng)∠BCD=∠A時(shí),求證:

【答案】1)見解析;(2)見解析

【解析】

1)由垂直的定義可得出DECDFC,結(jié)合ECF90°可得出四邊形DECF為矩形,由ACDBCD可得出CD平分ACB,利用角平分線的性質(zhì)可得出DEDF,再利用鄰邊相等的矩形是正方形可證出四邊形DECF是正方形;

2)由BCD+∠ACDACB90°BCDA可得出A+∠ACD90°,利用三角形內(nèi)角和定理可求出ADC90°,由DCFADFCADC90°可證出CDF∽△ACD,再利用相似三角形的性質(zhì)可證出

證明:(1DEACDFBC,

∴∠DECDFC90°,

∵∠ECF90°,

四邊形DECF為矩形.

∵∠ACDBCD,

CD平分ACB

DEDF,

四邊形DECF是正方形.

2∵∠BCD+∠ACDACB90°BCDA,

∴∠A+∠ACD90°,

∴∠ADC180°90°90°

∵∠DCFA,DFCADC90°,

∴△CDF∽△ACD,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1個(gè)單位長度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)△ABC(頂點(diǎn)是網(wǎng)格線的交點(diǎn))和點(diǎn)A1

1)畫出一個(gè)格點(diǎn)△A1B1C1,并使之是由△ABC平移后得到,且AA1是對應(yīng)點(diǎn);

2)畫出點(diǎn)B關(guān)于直線AC的對稱點(diǎn)D,并指出AD可以看作由ABA點(diǎn)經(jīng)過怎樣的旋轉(zhuǎn)而得的;

3)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一定角度,使得AB落在(2)中的線段AD的位置,請作出旋轉(zhuǎn)后的三角形,并求在這一旋轉(zhuǎn)過程中△ABC掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠ACB=45°,DAC上一點(diǎn),AD=5,連接BD,將△ABD沿BD翻折至△EBD,點(diǎn)A的對應(yīng)點(diǎn)E點(diǎn)恰好落在邊BC上.延長BC至點(diǎn)F,連接DF,若CF=2,tanABD=,則DF長為( 。

A.B.C.5D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是正方形,是等邊三角形,為對角線(不含點(diǎn))上任意一點(diǎn),將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)60°得到,連接、、

1)求證;

2)①當(dāng)點(diǎn)在何處時(shí),的值最;

②當(dāng)點(diǎn)在何處時(shí),的值最小,并說明理由;

3)當(dāng)的最小值為時(shí),求正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①線段的直徑,點(diǎn)上,點(diǎn)在射線上運(yùn)動(點(diǎn)不與點(diǎn)重合),直徑的垂線的平行線相交于點(diǎn)連接設(shè)

的取值范圍;

如圖②點(diǎn)是線段的交點(diǎn),若求證:直線相切;

如圖③當(dāng)時(shí),連接判斷四邊形的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將△ABC紙片沿中位線EH折疊,使點(diǎn)A對稱點(diǎn)D落在BC邊上,再將紙片分別沿等腰△BED和等腰△DHC的底邊上的高線EF,HG折疊,折疊后的三個(gè)三角形拼合形成一個(gè)矩形,類似地,對多邊形進(jìn)行折疊,若翻折后的圖形恰能拼合成一個(gè)無縫隙、無重疊的矩形,這樣的矩形稱為疊合矩形.

(1)將ABCD紙片按圖2的方式折疊成一個(gè)疊合矩形AEFG,則操作形成的折痕分別是線段_______,_________;S矩形AEFG:S□ABCD=__________

(2)ABCD紙片還可以按圖3的方式折疊成一個(gè)疊合矩形EFGH,若EF=5,EH=12,求AD的長;

(3)如圖4,四邊形ABCD紙片滿足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把該紙片折疊,得到疊合正方形,請你幫助畫出一種疊合正方形的示意圖,并求出AD、BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD,AB=4,BC=3,點(diǎn)PBC邊上,將CDP沿DP折疊,點(diǎn)C落在點(diǎn)E處,PE、DE分別交AB于點(diǎn)O、F,且OP=OF,則cosADF的值為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】北盤江大橋坐落于云南宜威與貴州水城交界處,橫跨云貴兩省,為目前世界第一高橋圖1是大橋的實(shí)物圖,圖2是從圖1中引申出的平面圖,測得橋護(hù)欄BG=1.8米,拉索AB與護(hù)欄的夾角是26°,拉索ED與護(hù)欄的夾角是60°,兩拉索底端距離BD300m,若兩拉索頂端的距離AE90m,請求出立柱AH的長.(tan26°≈0.5,sin26°≈0.4,1.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的袋子里裝有6個(gè)白色乒乓球和若干個(gè)紅色的乒乓球,這些球除顏色外其余均相同,攪拌均勻后,從這個(gè)袋子里隨機(jī)摸出一個(gè)乒乓球,是紅球的概率是

1)求該袋子中紅球的個(gè)數(shù);

2)小亮取出3個(gè)白色乒乓球分別表上1,2,3個(gè)數(shù)字,裝入另一個(gè)不透明的袋子里攪拌均勻,第一次從袋子里摸出一個(gè)球并記錄下該球上的數(shù)字,重新放回袋子中攪拌均勻,第二次從袋子中摸出一個(gè)球并記錄下該球上的數(shù)字,求這兩個(gè)數(shù)字之積是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解)

查看答案和解析>>

同步練習(xí)冊答案