【題目】如圖,在平面直角坐標(biāo)系中,⊙P的圓心是(2,a)(a>2),半徑為2,函數(shù)y=x的圖象被⊙P截得的弦AB的長(zhǎng)為 ,則a的值是( )

A.2
B.2+
C.2
D.2+

【答案】B
【解析】解:過(guò)P點(diǎn)作PE⊥AB于E,過(guò)P點(diǎn)作PC⊥x軸于C,交AB于D,連接PA.
∵PE⊥AB,AB=2 ,半徑為2,
∴AE= AB= ,PA=2,
根據(jù)勾股定理得:PE= =1,
∵點(diǎn)A在直線y=x上,
∴∠AOC=45°,
∵∠DCO=90°,
∴∠ODC=45°,
∴△OCD是等腰直角三角形,
∴OC=CD=2,
∴∠PDE=∠ODC=45°,
∴∠DPE=∠PDE=45°,
∴DE=PE=1,
∴PD=
∵⊙P的圓心是(2,a),
∴a=PD+DC=2+
故選:B.

【考點(diǎn)精析】根據(jù)題目的已知條件,利用圓的定義和直線與圓的三種位置關(guān)系的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握平面上到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)組成的圖形叫做圓.定點(diǎn)稱(chēng)為圓心,定長(zhǎng)稱(chēng)為半徑;直線與圓有三種位置關(guān)系:無(wú)公共點(diǎn)為相離;有兩個(gè)公共點(diǎn)為相交,這條直線叫做圓的割線;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在學(xué)習(xí)了《展開(kāi)與折疊》這一課后,明白了很多幾何體都能展開(kāi)成平面圖形.于是他在家用剪刀展開(kāi)了一個(gè)長(zhǎng)方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據(jù)你所學(xué)的知識(shí),回答下列問(wèn)題:

(1)小明總共剪開(kāi)了_______條棱.

(2)現(xiàn)在小明想將剪斷的②重新粘貼到①上去,而且經(jīng)過(guò)折疊以后,仍然可以還原成一個(gè)長(zhǎng)方體紙盒,你認(rèn)為他應(yīng)該將剪斷的紙條粘貼到①中的什么位置?請(qǐng)你幫助小明在①上補(bǔ)全.

(3)小明說(shuō):他所剪的所有棱中,最長(zhǎng)的一條棱是最短的一條棱的5倍.現(xiàn)在已知這個(gè)長(zhǎng)方體紙盒的底面是一個(gè)正方形,并且這個(gè)長(zhǎng)方體紙盒所有棱長(zhǎng)的和是880cm,求這個(gè)長(zhǎng)方體紙盒的體積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是矩形,直線l垂直平分線段AC,垂足為O,直線l分別與線段AD、CB的延長(zhǎng)線交于點(diǎn)E、F.
(1)△ABC與△FOA相似嗎?為什么?
(2)試判定四邊形AFCE的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】巳知二次函數(shù)y=a(x2﹣6x+8)(a>0)的圖象與x軸分別交于點(diǎn)A、B,與y軸交于點(diǎn)C.點(diǎn)D是拋物線的頂點(diǎn).
(1)如圖①.連接AC,將△OAC沿直線AC翻折,若點(diǎn)O的對(duì)應(yīng)點(diǎn)0'恰好落在該拋物線的 對(duì)稱(chēng)軸上,求實(shí)數(shù)a的值;
(2)如圖②,在正方形EFGH中,點(diǎn)E、F的坐標(biāo)分別是(4,4)、(4,3),邊HG位于邊EF的 右側(cè).小林同學(xué)經(jīng)過(guò)探索后發(fā)現(xiàn)了一個(gè)正確的命題:“若點(diǎn)P是邊EH或邊HG上的任意一點(diǎn),則四條線段PA、PB、PC、PD不能與任何一個(gè)平行四邊形的四條邊對(duì)應(yīng)相等 (即這四條線段不能構(gòu)成平行四邊形).“若點(diǎn)P是邊EF或邊FG上的任意一點(diǎn),剛才的結(jié)論是否也成立?請(qǐng)你積極探索,并寫(xiě)出探索過(guò)程;
(3)如圖②,當(dāng)點(diǎn)P在拋物線對(duì)稱(chēng)軸上時(shí),設(shè)點(diǎn)P的縱坐標(biāo)t是大于3的常數(shù),試問(wèn):是否存在一個(gè)正數(shù)a,使得四條線段PA、PB、PC、PD與一個(gè)平行四邊形的四條邊對(duì)應(yīng)相等 (即這四條線段能構(gòu)成平行四邊形)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】
(1)計(jì)算:22+(﹣1)4+( ﹣2)0﹣|﹣3|;
(2)先化簡(jiǎn),再求值:(4ab3﹣8a2b2)÷4ab+(2a+b)(2a﹣b),其中a=2,b=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某數(shù)學(xué)課外活動(dòng)小組測(cè)量電視塔AB的高度.他們借助一個(gè)高度為30m的建筑物CD進(jìn)行測(cè)量,在點(diǎn)C處測(cè)得塔頂B的仰角為45°,在點(diǎn)E處測(cè)得B的仰角為37°(B、D、E三點(diǎn)在一條直線上).求電視塔的高度h.
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列圖形中,是中心對(duì)稱(chēng)但不是軸對(duì)稱(chēng)圖形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在菱形ABCD中,AB=6 ,tan∠ABC=2,點(diǎn)E從點(diǎn)D出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿著射線DA的方向勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(秒),將線段CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一個(gè)角α(α=∠BCD),得到對(duì)應(yīng)線段CF.

(1)求證:BE=DF;
(2)當(dāng)t=秒時(shí),DF的長(zhǎng)度有最小值,最小值等于
(3)如圖2,連接BD、EF、BD交EC、EF于點(diǎn)P、Q,當(dāng)t為何值時(shí),△EPQ是直角三角形?
(4)如圖3,將線段CD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一個(gè)角α(α=∠BCD),得到對(duì)應(yīng)線段CG.在點(diǎn)E的運(yùn)動(dòng)過(guò)程中,當(dāng)它的對(duì)應(yīng)點(diǎn)F位于直線AD上方時(shí),直接寫(xiě)出點(diǎn)F到直線AD的距離y關(guān)于時(shí)間t的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為了測(cè)量某建筑物MN的高度,在平地上A處測(cè)得建筑物頂端M的仰角為30°,向N點(diǎn)方向前進(jìn)16m到達(dá)B處,在B處測(cè)得建筑物頂端M的仰角為45°,則建筑物MN的高度等于( )

A.8( )m
B.8( )m
C.16( )m
D.16( )m

查看答案和解析>>

同步練習(xí)冊(cè)答案