【題目】如圖,的外接圓,,點(diǎn)外一點(diǎn),,則線段的最大值為(

A.9B.4.5C.D.

【答案】C

【解析】

連接OBOC,如圖,則△OBC是頂角為120°的等腰三角形,將OPC繞點(diǎn)O順時針旋轉(zhuǎn)120°到OMB的位置,連接MP,則∠POM=120°,MB=PC=3OM=OP,根據(jù)等腰三角形的性質(zhì)和銳角三角函數(shù)可得 ,于是求OP的最大值轉(zhuǎn)化為求PM的最大值,因?yàn)?/span>,所以當(dāng)P、B、M三點(diǎn)共線時,PM最大,據(jù)此求解即可.

解:連接OB、OC,如圖,則OB=OC,∠BOC=2A=120°,將OPC繞點(diǎn)O順時針旋轉(zhuǎn)120°到OMB的位置,連接MP,則∠POM=120°,MB=PC=3OM=OP,

過點(diǎn)OONPM于點(diǎn)N,則∠MON=60°MN=PM,

在直角MON中,,∴,

∴當(dāng)PM最大時,OP最大,

又因?yàn)?/span>,所以當(dāng)P、BM三點(diǎn)共線時,PM最大,此時PM=3+6=9

所以OP的最大值是:.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的頂點(diǎn)為A(1,4),拋物線與y軸交于點(diǎn)B(0,3),與x軸交于C、D兩點(diǎn).點(diǎn)Px軸上的一個動點(diǎn).

(1)求此拋物線的解析式;

(2)當(dāng)PA+PB的值最小時,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,.點(diǎn)是平面內(nèi)不與點(diǎn),重合的任意一點(diǎn).連接,將線段繞點(diǎn)逆時針旋轉(zhuǎn)得到線段,連接,,

1)觀察猜想

如圖1,當(dāng)時,的值是______,直線與直線相交所成的較小角的度數(shù)是____________.(提示:求角度時可考慮延長的延長線于

2)類比探究

如圖2,當(dāng)時,請寫出的值及直線與直線相交所成的小角的度數(shù),并就圖2的情形說明理由.

3)解決問題

當(dāng)時,若點(diǎn),分別是的中點(diǎn),點(diǎn)在直線上,請直接寫出點(diǎn),在同一直線上時的值_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當(dāng)x≥2時,yx的增大而增大,且-2≤x≤1時,y的最大值為9,則a的值為  

A. 1 B. - C. D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年3月國際風(fēng)箏節(jié)期間,王大伯決定銷售一批風(fēng)箏,經(jīng)市場調(diào)研:蝙蝠型風(fēng)箏進(jìn)價(jià)每個為10元,當(dāng)售價(jià)每個為12元時,銷售量為180個,若售價(jià)每提高1元,銷售量就會減少10個,請回答以下問題:

(1)用表達(dá)式表示蝙蝠型風(fēng)箏銷售量y(個)與售價(jià)x(元)之間的函數(shù)關(guān)系(12≤x≤30);

(2)王大伯為了讓利給顧客,并同時獲得840元利潤,售價(jià)應(yīng)定為多少?

(3)當(dāng)售價(jià)定為多少時,王大伯獲得利潤W最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,的三個頂點(diǎn)都在格點(diǎn)上,點(diǎn)的坐標(biāo)為,請解答下列問題:

1)畫出關(guān)于軸對稱的,點(diǎn)的坐標(biāo)為______;

2)在網(wǎng)格內(nèi)以點(diǎn)為位似中心,把按相似比放大,得到,請畫出;若邊上任意一點(diǎn)的坐標(biāo)為,則兩次變換后對應(yīng)點(diǎn)的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景區(qū)平面圖如圖1所示,為邊界上的點(diǎn).已知邊界是一段拋物線,其余邊界均為線段,且,拋物線頂點(diǎn)的距離.所在直線為軸,所在直線為軸,建立平面直角坐標(biāo)系.

求邊界所在拋物線的解析式;

如圖2,該景區(qū)管理處欲在區(qū)域內(nèi)圍成一個矩形場地,使得點(diǎn)在邊界上,點(diǎn)在邊界上,試確定點(diǎn)的位置,使得矩形的周長最大,并求出最大周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 RtABC 中BC=2,以 BC 的中點(diǎn) O 為圓心的⊙O 分別與 AB,AC 相切于 D,E 兩點(diǎn),的長為(

A.B.C.πD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y1與一次函數(shù)y2ax+b的圖象交于點(diǎn)A(﹣25)和點(diǎn)Bn,l).

1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;

2)請結(jié)合圖象直接寫出當(dāng)y1y2時自變量x的取值范圍;

3)點(diǎn)Py軸上的一個動點(diǎn),若SAPB8,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案