【題目】如圖,點E、F、G、H分別是矩形ABCDAB、BCCD、DA上的點,且HGEF交于點I,連接HE、FG,若AB=6BC=5,EF//AD,HG//AB,則HE+FG的最小值是_____

【答案】

【解析】

EF//AD,HG//AB,結(jié)合矩形的性質(zhì)可得四邊形AHIE和四邊形IFCG為矩形,然后根據(jù)矩形的性質(zhì)可的HE+FG的長度也就是AI+CI的長度,然后利用兩點之間,線段最短求其最小值即可.

解:在矩形ABCD中,∠A=C=B=90°,ABCD,ADBC

EF//AD,HG//AB

∴四邊形AHIE和四邊形IFCG為矩形

HE=AI,FG=CI

HE+FG的長度也就是AI+CI的長度

又因為AI+CIAC

∴當AI,C三點共線時,AI+CI最小,即AC的長度

RtABC中,

HE+FG的最小值為

故答案為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形中,邊長,菱形的三個頂點分別在正方形的邊連接,則的面積等于_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,EBC邊一點,DE平分∠ADC,EF∥DCAD邊于點F,連結(jié)BD.

(1)求證:四邊形EFCD是正方形;

(2)若BE=1,ED=2,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“安全教育,警鐘長鳴”,為此,某中學組織全校1200名學生參加安全知識測試,為了解本次測試成績的分布情況,從中隨機抽取了部分學生的成績,繪制出如下不完整的統(tǒng)計圖表:

分段數(shù)

頻數(shù)

頻率

60≤x<70

30

0.15

70≤x<80

60

n

80≤x<90

90≤x<100

20

0.1

合計

m

1

請根據(jù)以上圖表提供的信息,解答下列問題:
(1)表中m的值為 , n的值為 ;
(2)補全頻數(shù)分布直方圖;
(3)測試成績的中位數(shù)在哪個分數(shù)段?
(4)規(guī)定測試成績80分以上(含80分)為合格,請估計全校學生中合格人數(shù)約為多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學最重要的著作,奠定了中國傳統(tǒng)數(shù)學的基本框架.它的代數(shù)成就主要包括開方術(shù)、正負術(shù)和方程術(shù).其中,方程術(shù)是《九章算術(shù)》最高的數(shù)學成就.《九章算術(shù)》中記載:“今有人共買雞,人出九,盈十一;人出六,不足十六.問人數(shù)幾何?”

譯文:“有幾個人共同出錢買雞,如果每人出九錢,那么多了十一錢;如果每人出六錢,那么少了十六錢.問:有幾個人共同出錢買雞?設(shè)有x個人共同買雞,根據(jù)題意列一元一次方程._____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 解下列各題

1)解方程x+;

2)在解方程練習時,學習卷中有一個方程“2yy+■”中的沒印清,小聰問老師,老師只是說:“■是一個有理數(shù),該方程的解與當x2時,代數(shù)式5x1)﹣2x2)﹣4的值相同,小聰很快補上了這個常數(shù),同學們,你們能補上這個常數(shù)嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平行四邊形ABCD中,對角線AC、BD交于點O,經(jīng)過點O的直線AD于點E,交BC于點F

1)求證:OE=OF;

2)如圖2,連接AFCE,當AFFC時,在不添加輔助線的情況下,直接寫出等于的線段.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人進行比賽的路程與時間的關(guān)系如圖所示.

(1)這是一場________米比賽;

(2)前一半賽程內(nèi)________的速度較快,最終________贏得了比賽;

(3)兩人第________秒在途中相遇,相遇時距終點________米;

(4)甲在前8秒的平均速度是多少?甲在整個賽程的平均速度是多少?乙在前8秒的平均速度是多少?乙在整個賽程的平均速度是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,平分,分別交,,.連接,求證:四邊形是菱形.

查看答案和解析>>

同步練習冊答案