【題目】木桿AB斜靠在墻壁上,當(dāng)木桿的上端A沿墻壁NO豎直下滑時,木桿的底端B也隨之沿著射線OM方向滑動.下列圖中用虛線畫出木桿中點P隨之下落的路線,其中正確的是( 。
A.
B.
C.
D.

【答案】D
【解析】解:如右圖,
連接OP,由于OP是Rt△AOB斜邊上的中線,
所以O(shè)P= AB,不管木桿如何滑動,它的長度不變,也就是OP是一個定值,點P就在以O(shè)為圓心的圓弧上,那么中點P下落的路線是一段弧線.
故選D.

先連接OP,易知OP是Rt△AOB斜邊上的中線,根據(jù)直角三角形斜邊上的中線等于斜邊的一半,可得OP= AB,由于木桿不管如何滑動,長度都不變,那么OP就是一個定值,那么P點就在以O(shè)為圓心的圓弧上.本題考查了軌跡,直角三角形斜邊上的中線,解題的關(guān)鍵是知道直角三角形斜邊上的中線等于斜邊的一半.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國最大的水果公司“佳沃鑫榮懋”旗下子公司“歡樂果園”購進(jìn)某種水果的成本為20元/kg,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種水果在未來48天的銷售單價p(元/kg)與時間t(天)之間的函數(shù)關(guān)系式為P= ,且其日銷售量y(kg)與時間t(天)的關(guān)系如表:

時間t(天)

1

3

6

10

20

40

日銷售量y(kg)

118

114

108

100

80

40


(1)已知y與t之間的變化規(guī)律符合一次函數(shù)關(guān)系,試求在第30天的日銷售量是多少?
(2)問哪一天的銷售利潤最大?最大日銷售利潤為多少?
(3)在實際銷售前24天中,子公司決定每銷售1kg水果就捐贈n元利潤(n<9)給“精準(zhǔn)扶貧”對象.現(xiàn)發(fā)現(xiàn):在前24天中,每天扣除捐贈后的日銷售利潤隨時間t的增大而增大,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小武新家裝修,在裝修客廳時,購進(jìn)彩色地磚和單色地磚共100塊,共花費5600元.已知彩色地磚的單價是80/塊,單色地磚的單價是40/塊.

(1)兩種型號的地磚各采購了多少塊?

(2)如果廚房也要鋪設(shè)這兩種型號的地磚共60塊,且采購地磚的費用不超過3200元,那么彩色地磚最多能采購多少塊?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【新知理解】

如圖①,點C在線段AB上,圖中共有三條線段AB、ACBC,若其中有一條線段的長度是另外一條線段長度的2倍,則稱點C是線段AB巧點”.

線段的中點__________這條線段的巧點;(填不是.

AB = 12cm,點C是線段AB的巧點,則AC=___________cm;

【解決問題】

3如圖②,已知AB=12cm.動點P從點A出發(fā),以2cm/s的速度沿AB向點B勻速移動:點Q從點B出發(fā),以1cm/s的速度沿BA向點A勻速移動,點P、Q同時出發(fā),當(dāng)其中一點到達(dá)終點時,運動停止,設(shè)移動的時間為ts.當(dāng)t為何值時,A、P、Q三點中其中一點恰好是另外兩點為端點的線段的巧點?說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ABC=90°,點D,F(xiàn)分別是AC,AB的中點,CE∥DB,BE∥DC,AD=3,DF=1,四邊形DBEC面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A、BC、D、E在同一直線上,且ACBD,E是線段BC的中點.

(1)點E是線段AD的中點嗎?說明理由;

(2)當(dāng)AD=10,AB=3時,求線段BE的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD內(nèi)接于⊙O,如圖所示,在劣弧 上取一點E,連接DE、BE,過點D作DF∥BE交⊙O于點F,連接BF、AF,且AF與DE相交于點G,求證:
(1)四邊形EBFD是矩形;
(2)DG=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過A(1,0),B(4,0),C(0,-4)三點,點D是直線BC上方的拋物線上的一個動點,連結(jié)DC,DB,則△BCD的面積的最大值是( )

A.7
B.7.5
C.8
D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是等邊△ABC內(nèi)一點,OA=3,OB=4,OC=5,將線段BO以點B為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:
①△BO′A可以由△BOC繞點B逆時針旋轉(zhuǎn)60°得到;
②點O與O′的距離為4;
③四邊形AO BO′的面積為6+3
④∠AOB=150°;
⑤SAOC+SAOB=6+
其中正確的結(jié)論是( )

A.②③④⑤
B.①③④⑤
C.①②③⑤
D.①②④⑤

查看答案和解析>>

同步練習(xí)冊答案