【題目】二次函數(shù)yax2+bx+cab,c是常數(shù),a0)的自變量x與函數(shù)值y的部分對應(yīng)值如表:

x

2

1

0

1

2

yax2+bx+c

t

m

2

2

n

且當(dāng)x時,與其對應(yīng)的函數(shù)值y0,有下列結(jié)論:

abc0;mn;23是關(guān)于x的方程ax2+bx+ct的兩個根;

其中,正確結(jié)論的個數(shù)是( 。.

A.1B.2C.3D.4

【答案】B

【解析】

根據(jù)二次函數(shù)的性質(zhì)逐一進(jìn)行分析即可

解:①函數(shù)的對稱軸為:x0+1)=,則ab0,c=﹣20,故abc0,故①錯誤,不符合題意;

②根據(jù)表格可得:x=﹣1x2關(guān)于函數(shù)對稱軸對稱,故mn正確,符合題意;

③函數(shù)的對稱軸為:x,根據(jù)表格可得:x=﹣2x3關(guān)于函數(shù)對稱軸對稱,此時的函數(shù)值為t,則﹣23是關(guān)于x的方程ax2+bx+ct的兩個根,故③正確,符合題意;

④函數(shù)的對稱軸為:x,則b=-a,當(dāng)x=﹣時,yab20,所以 3a80,故④錯誤,不符合題意;

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】創(chuàng)客聯(lián)盟的隊員想用3D打印完成一幅邊長為4米的正方形作品ABCD,設(shè)計圖案如圖所示(四周陰影是四個全等的矩形,用材料甲打;中心區(qū)是正方形A′B′C′D′,用材料乙打。诖蛴『穸缺3窒嗤那闆r下,兩種材料的消耗成本如下表

材料

價格(元/2

60

30

設(shè)矩形的較短邊AH的長為x米,打印材料的總費用為y元.

1A′D′的長為   米(用含x的代數(shù)式表示);

2)求y關(guān)于x的函數(shù)解析式;

3)當(dāng)中心區(qū)的邊長不小于3時,預(yù)備材料的購買資金700元夠用嗎?請利用函數(shù)的增減性來說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=8,P為線段AB上一個動點,分別以AP,PB為邊在AB的同側(cè)作菱形APCDPBFE,點P,C,E在一條直線上,∠DAP=60°,M,N分別是對角線AC,BE的中點,當(dāng)點P在線段AB上移動時,點M,N之間的距離最短為( )

A. B. C. 4D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小李駕駛小汽車勻速地從A地行駛到B地,行駛里程為360千米,設(shè)小汽車的行駛時間為t(單位:小時),行駛速度為v(單位:千米/小時),且全程速度限定為不超過120千米/小時.

1)求v關(guān)于t的函數(shù)表達(dá)式(不用寫取值范圍);

2)小李上午8點駕駛小汽車從A地出發(fā).

①小李需在當(dāng)天12點至13點間到達(dá)B地,求小汽車行駛速度v的范圍.

②小李能否在當(dāng)天1130分前到達(dá)B地?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程mx2+(2m+1)x+m0有兩個實數(shù)根.

(1)m的取值范圍

(2)是否存在實數(shù)m,使方程的兩實數(shù)根的倒數(shù)和為0?若存在,請求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象經(jīng)過(﹣1,0),(30),(1,﹣5)三點.

1)求該二次函數(shù)的解析式;

2)求該圖象的頂點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A在雙曲線yx0)上,點B在雙曲線yx0)上,且ABx軸,BCy軸,點Cx軸上,則ABC的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB,AC分別是半⊙O的直徑和弦,OD⊥AC于點D,過點A作半⊙O的切線AP,APOD的延長線交于點P.連接PC并延長與AB的延長線交于點F

1)求證:PC是半⊙O的切線;

2)若∠CAB=30°AB=10,求線段BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,M、N是BD的三等分點,連接CM并延長交AB于點E,連接EN并延長交CD于點F,以下結(jié)論:

①E為AB的中點;

②FC=4DF;

③SECF=;

④當(dāng)CEBD時,DFN是等腰三角形.

其中一定正確的是

查看答案和解析>>

同步練習(xí)冊答案