【題目】如圖,已知線段AB=20cm,CD=2cm,線段CD在線段AB上運(yùn)動,E、F分別是AC、BD的中點.

(1)AC=4cm,則EF=_______cm.

(2)當(dāng)線段CD在線段AB上運(yùn)動時,EF的長度是否改變,如果變化,請說明理由.

【答案】(1)EF=11;(2) EF的長度不變..

【解析】

(1)依據(jù)AB=20cm,CD=2cm,AC=4cm,可得DB=14cm,再根據(jù)E、F分別是AC、BD的中點,即可得到,進(jìn)而得出EF=2+2+7=11cm;

(2)依據(jù)E、F分別是AC、BD的中點,可得,再根據(jù)EF=EC+CD+DF進(jìn)行計算,即可得到

解:(1)AB=20cm,CD=2cm,AC=4cm,

DB=14cm,

E、F分別是AC、BD的中點,

EF=2+2+7=11cm,

故答案為:11;

(2)EF的長度不變.

E、F分別是AC、BD的中點,

EF=EC+CD+DF,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是半圓O上的一點,AC平分∠DAB,AD⊥CD,垂足為D,AD交⊙O于E,連接CE.
(1)判斷CD與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若E是 的中點,⊙O的半徑為1,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“雙十二”期間,A,B兩個超市開展促銷活動,活動方式如下:

A超市:購物金額打9折后,若超過2000元再優(yōu)惠300元;

B超市:購物金額打8

某學(xué)校計劃購買某品牌的籃球做獎品,該品牌的籃球在AB兩個超市的標(biāo)價相同根據(jù)商場的活動方式:

(1)若一次性付款4200元購買這種籃球,則在B商場購買的數(shù)量比在A商場購買的數(shù)量多5請求出這種籃球的標(biāo)價;

(2)學(xué)校計劃購買100個籃球,請你設(shè)計一個購買方案,使所需的費用最少.(直接寫出方案

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道:任意一個有理數(shù)與無理數(shù)的和為無理數(shù),任意一個不為零的有理數(shù)與一個無理數(shù)的積為無理數(shù),而零與無理數(shù)的積為零.由此可得:如果ax+b=0,其中a、b為有理數(shù),x為無理數(shù),那么a=0且b=0.

運(yùn)用上述知識,解決下列問題:

(1)如果a-2+b+3=0,其中a、b為有理數(shù),那么a= ,b=

(2)如果2+a-1-b=5,其中a、b為有理數(shù),求a+2b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解

,即23

的整數(shù)部分為2,小數(shù)部分為2,

112

1的整數(shù)部分為1

1的小數(shù)部分為2

解決問題:已知:a3的整數(shù)部分,b3的小數(shù)部分,

求:(1ab的值;

2)(﹣a3+b+42的平方根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了綠化環(huán)境,育英中學(xué)八年級三班同學(xué)都積極參加植樹活動今年植樹節(jié)時該班同學(xué)植樹情況的部分?jǐn)?shù)據(jù)如圖所示,請根據(jù)統(tǒng)計圖信息,回答下列問題

1)八年級三班共有多少名同學(xué)?

2)條形統(tǒng)計圖中,m=   ,n=   

3)扇形統(tǒng)計圖中試計算植樹2棵的人數(shù)所對應(yīng)的扇形圓心角的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道:分式和分?jǐn)?shù)有著很多的相似點.如類比分?jǐn)?shù)的基本性質(zhì),我們得到了分式的基本性質(zhì);類比分?jǐn)?shù)的運(yùn)算法則,我們得到了分式的運(yùn)算法則;等等.小學(xué)里,把分子比分母小的分?jǐn)?shù)叫做真分?jǐn)?shù).類似地,我們把分子整式的次數(shù)小于分母整式的次數(shù)的分式稱為真分式;反之,稱為假分式.任何一個假分式都可以化成整式與真分式的和的形式,如: ;

(1)下列分式中,屬于真分式的是:________(填序號);

(2)將假分式化成整式與真分式的和的形式: ________________;

(3)將假分式化成整式與真分式的和的形式: __________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC,以AB為直徑的⊙O分別交AC于D,BC于E,連接ED,若ED=EC.
(1)求證:AB=AC;
(2)若AB=4,BC=2 ,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中 ,∠A=∠B,D、E是邊AB上的點,DG∥AC,EF∥BC,DG、EF相 交于點H.

(1)∠HDE與∠HED是否相等?并說明理由.

解:∠HDE=∠HED.理由如下:

∵DGAC(已知)

                 

EFBC (已知)

            

又∵∠A=∠B (已知)

.

(2)如果∠C=90°,DG、 EF有何位置關(guān)系?并仿照 (1)中的解答方法說明理由.

解:        .理由如下:

查看答案和解析>>

同步練習(xí)冊答案